IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_10722.html
   My bibliography  Save this paper

Stage-Based Identification of Policy Effects

Author

Listed:
  • Christian Alemán
  • Christopher Busch
  • Alexander Ludwig
  • Raül Santaeulàlia-Llopis

Abstract

We develop a method that identifies the effects of nationwide policy, i.e., policy implemented across all regions at the same time. The core idea is to track outcome paths in terms of stages rather than time, where a stage of a regional outcome at time t is its location on the support of a reference path. The method proceeds in two steps. First, a normalization maps the time paths of regional outcomes onto the reference path—using only pre-policy data. This uncovers cross-regional heterogeneity of the stage at which policy is implemented. Second, this stage variation identifies policy effects inside a window of stages where a stage-leading region provides the no-policy counterfactual path for non-leading regions that are subject to policy inside that window. We assess our method’s performance with Monte-Carlo experiments, illustrate it with empirical applications, and show that it captures heterogeneous policy effects across stages.

Suggested Citation

  • Christian Alemán & Christopher Busch & Alexander Ludwig & Raül Santaeulàlia-Llopis, 2023. "Stage-Based Identification of Policy Effects," CESifo Working Paper Series 10722, CESifo.
  • Handle: RePEc:ces:ceswps:_10722
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp10722.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ulrich Glogowsky & Emanuel Hansen & Simeon Schächtele, 2021. "How effective are social distancing policies? Evidence on the fight against COVID-19," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-12, September.
    2. Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021. "Panel forecasts of country-level Covid-19 infections," Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
    3. David Card, 1990. "The Impact of the Mariel Boatlift on the Miami Labor Market," ILR Review, Cornell University, ILR School, vol. 43(2), pages 245-257, January.
    4. Jerry Hausman, 2001. "Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 57-67, Fall.
    5. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    6. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    7. Claudia Goldin & Lawrence F. Katz, 2002. "The Power of the Pill: Oral Contraceptives and Women's Career and Marriage Decisions," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 730-770, August.
    8. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    9. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    10. Jeremy Greenwood & Ananth Seshadri & Guillaume Vandenbroucke, 2005. "The Baby Boom and Baby Bust," American Economic Review, American Economic Association, vol. 95(1), pages 183-207, March.
    11. Klaus Adam & Albert Marcet & Johannes Beutel, 2017. "Stock Price Booms and Expected Capital Gains," American Economic Review, American Economic Association, vol. 107(8), pages 2352-2408, August.
    12. Glover, Andrew & Heathcote, Jonathan & Krueger, Dirk & Ríos-Rull, José-Víctor, 2023. "Health versus wealth: On the distributional effects of controlling a pandemic," Journal of Monetary Economics, Elsevier, vol. 140(C), pages 34-59.
    13. David Card, 2022. "Design-Based Research in Empirical Microeconomics," American Economic Review, American Economic Association, vol. 112(6), pages 1773-1781, June.
    14. F. F. Gunsilius, 2023. "Distributional Synthetic Controls," Econometrica, Econometric Society, vol. 91(3), pages 1105-1117, May.
    15. Matteo Cervellati & Uwe Sunde, 2015. "The Economic and Demographic Transition, Mortality, and Comparative Development," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 189-225, July.
    16. Blundell, Richard & Macurdy, Thomas, 1999. "Labor supply: A review of alternative approaches," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 27, pages 1559-1695, Elsevier.
    17. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    18. Richard Rogerson, 2008. "Structural Transformation and the Deterioration of European Labor Market Outcomes," Journal of Political Economy, University of Chicago Press, vol. 116(2), pages 235-259, April.
    19. Douglas Gollin & Stephen Parente & Richard Rogerson, 2002. "The Role of Agriculture in Development," American Economic Review, American Economic Association, vol. 92(2), pages 160-164, May.
    20. Jesús Fernández-Villaverde & Jeremy Greenwood & Nezih Guner, 2014. "From Shame To Game In One Hundred Years: An Economic Model Of The Rise In Premarital Sex And Its De-Stigmatization," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 25-61, February.
    21. Tiago Cavalcanti & Georgi Kocharkov & Cezar Santos, 2021. "Family Planning and Development: Aggregate Effects of Contraceptive Use," The Economic Journal, Royal Economic Society, vol. 131(634), pages 624-657.
    22. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    23. Moll, Benjamin & Kaplan, Greg & Violante, Giovanni, 2020. "The Great Lockdown and the Big Stimulus: Tracing the Pandemic Possibility Frontier for the U.S," CEPR Discussion Papers 15256, C.E.P.R. Discussion Papers.
    24. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    25. Hyslop, Dean R & Imbens, Guido W, 2001. "Bias from Classical and Other Forms of Measurement Error," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 475-481, October.
    26. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    27. Andrew Atkeson, 2020. "What Will Be the Economic Impact of COVID-19 in the US? Rough Estimates of Disease Scenarios," NBER Working Papers 26867, National Bureau of Economic Research, Inc.
    28. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    29. Gary D. Hansen & Edward C. Prescott, 2002. "Malthus to Solow," American Economic Review, American Economic Association, vol. 92(4), pages 1205-1217, September.
    30. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    31. Alan B. Krueger & David Card, 2000. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania: Reply," American Economic Review, American Economic Association, vol. 90(5), pages 1397-1420, December.
    32. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    33. Herrendorf, Berthold & Rogerson, Richard & Valentinyi, Ákos, 2014. "Growth and Structural Transformation," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 6, pages 855-941, Elsevier.
    34. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    35. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    36. Jeremy Greenwood & Nezih Guner, 2010. "Social Change: The Sexual Revolution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(4), pages 893-923, November.
    37. Martha J. Bailey, 2006. "More Power to the Pill: The Impact of Contraceptive Freedom on Women's Life Cycle Labor Supply," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(1), pages 289-320.
    38. Chodorow-Reich, Gabriel, 2020. "Regional data in macroeconomics: Some advice for practitioners," Journal of Economic Dynamics and Control, Elsevier, vol. 115(C).
    39. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    40. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    41. Jonathan Roth, 2022. "Pretest with Caution: Event-Study Estimates after Testing for Parallel Trends," American Economic Review: Insights, American Economic Association, vol. 4(3), pages 305-322, September.
    42. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    2. Christian Alemán & Christopher Busch & Alexander Ludwig & Raül Santaeulà lia-Llopis, 2020. "Evaluating the Effectiveness of Policies Against a Pandemic," Working Papers 2020-078, Human Capital and Economic Opportunity Working Group.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    5. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    6. Herrero Prieto, Luis César, 2009. "La investigación en economía de la cultura en España: un estudio bibliométrico/Research in Cultural Economics in Spain: A Bibliometric Study," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 27, pages 35-62, Abril.
    7. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    9. Glover, Andrew & Heathcote, Jonathan & Krueger, Dirk & Ríos-Rull, José-Víctor, 2023. "Health versus wealth: On the distributional effects of controlling a pandemic," Journal of Monetary Economics, Elsevier, vol. 140(C), pages 34-59.
    10. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    11. Masahiro Kato & Akari Ohda & Masaaki Imaizumi, 2023. "Asymptotically Unbiased Synthetic Control Methods by Distribution Matching," Papers 2307.11127, arXiv.org, revised May 2024.
    12. Kyunghoon Ban & D'esir'e K'edagni, 2022. "Robust Difference-in-differences Models," Papers 2211.06710, arXiv.org, revised Aug 2023.
    13. Dmitry Arkhangelsky & Aleksei Samkov, 2024. "Sequential Synthetic Difference in Differences," Papers 2404.00164, arXiv.org.
    14. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    15. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    16. Porreca, Zachary, 2022. "Synthetic difference-in-differences estimation with staggered treatment timing," Economics Letters, Elsevier, vol. 220(C).
    17. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    18. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    19. Myoung-jae Lee & Yasuyuki Sawada, 2020. "Review on Difference in Differences," Korean Economic Review, Korean Economic Association, vol. 36, pages 135-173.
    20. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.

    More about this item

    Keywords

    stages; identification; policy effects; nationwide policy; macroeconomics;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • E00 - Macroeconomics and Monetary Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_10722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.