IDEAS home Printed from https://ideas.repec.org/p/cep/cepdps/dp0762.html
   My bibliography  Save this paper

An R&D-Based Model of Multi-Sector Growth

Author

Listed:
  • L. Rachel Ngai
  • Roberto M. Samaniego

Abstract

We develop a multi-sector general equilibrium model in which productivity growth is driven by the production of sector-specific knowledge. In the model, we find that long run differences in total factor productivity growth across sectors are independent of the parameters of the knowledge production function except for one, which we term the fertility of knowledge. Differences in R&D intensity are also independent of most other parameters. The fertility of knowledge in the capital sector is central to the growth properties of the model economy.

Suggested Citation

  • L. Rachel Ngai & Roberto M. Samaniego, 2006. "An R&D-Based Model of Multi-Sector Growth," CEP Discussion Papers dp0762, Centre for Economic Performance, LSE.
  • Handle: RePEc:cep:cepdps:dp0762
    as

    Download full text from publisher

    File URL: https://cep.lse.ac.uk/pubs/download/dp0762.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    2. repec:ucp:bknber:9780226304557 is not listed on IDEAS
    3. Dale Jorgenson & Mun Ho & Jon Samuels & Kevin Stiroh, 2007. "Industry Origins of the American Productivity Resurgence," Economic Systems Research, Taylor & Francis Journals, vol. 19(3), pages 229-252.
    4. Yasser Abdih & Frederick Joutz, 2006. "Relating the Knowledge Production Function to Total Factor Productivity: An Endogenous Growth Puzzle," IMF Staff Papers, Palgrave Macmillan, vol. 53(2), pages 1-3.
    5. Samaniego, Roberto M., 2007. "R&D And Growth: The Missing Link?," Macroeconomic Dynamics, Cambridge University Press, vol. 11(5), pages 691-714, November.
    6. Charles I. Jones, 2002. "Sources of U.S. Economic Growth in a World of Ideas," American Economic Review, American Economic Association, vol. 92(1), pages 220-239, March.
    7. repec:fth:harver:1473 is not listed on IDEAS
    8. Cohen, Wesley M. & Levin, Richard C., 1989. "Empirical studies of innovation and market structure," Handbook of Industrial Organization, in: R. Schmalensee & R. Willig (ed.), Handbook of Industrial Organization, edition 1, volume 2, chapter 18, pages 1059-1107, Elsevier.
    9. Nadiri, M Ishaq & Prucha, Ingmar R, 1996. "Estimation of the Depreciation Rate of Physical and R&D Capital in the U.S. Total Manufacturing Sector," Economic Inquiry, Western Economic Association International, vol. 34(1), pages 43-56, January.
    10. Ariel Pakes & Mark Schankerman, 1984. "An Exploration into the Determinants of Research Intensity," NBER Chapters, in: R&D, Patents, and Productivity, pages 209-232, National Bureau of Economic Research, Inc.
    11. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    12. Evangelia Vourvachaki, 2005. "Information and Communication Technologies in a Multi-Sector Endogenous Growth Model," Money Macro and Finance (MMF) Research Group Conference 2005 10, Money Macro and Finance Research Group.
    13. James D. Adams & Adam B. Jaffe, 1996. "Bounding the Effects of R&D: An Investigation Using Matched Establishment-Firm Data," RAND Journal of Economics, The RAND Corporation, vol. 27(4), pages 700-721, Winter.
    14. Daron Acemoglu & Veronica Guerrieri, 2008. "Capital Deepening and Nonbalanced Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 116(3), pages 467-498, June.
    15. Krusell, Per, 1998. "Investment-Specific R&D and the Decline in the Relative Price of Capital," Journal of Economic Growth, Springer, vol. 3(2), pages 131-141, June.
    16. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    17. Daniel J. Wilson, 2002. "Is Embodied Technology the Result of Upstream R&D? Industry-Level Evidence," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 5(2), pages 285-317, April.
    18. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
    19. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    20. Klenow, Peter J., 1996. "Industry innovation: where and why," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 44(1), pages 125-150, June.
    21. Wesley M. Cohen & Richard C. Levin & David C. Mowery, 1987. "Firm Size and R&D Intensity: A Re-Examination," NBER Working Papers 2205, National Bureau of Economic Research, Inc.
    22. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2005. "Productivity, Volume 3: Information Technology and the American Growth Resurgence," MIT Press Books, The MIT Press, edition 1, volume 3, number 0262101114, April.
    23. Jeffrey I. Bernstein & M. Ishaq Nadiri, 1989. "Research and Development and Intra-industry Spillovers: An Empirical Application of Dynamic Duality," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 56(2), pages 249-267.
    24. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    25. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    26. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    27. Michael E. Porter & Scott Stern, 2000. "Measuring the "Ideas" Production Function: Evidence from International Patent Output," NBER Working Papers 7891, National Bureau of Economic Research, Inc.
    28. Carolyn J. Hill & Robert T. Michael, 2000. "Measuring Poverty in the NLSY97," JCPR Working Papers 210, Northwestern University/University of Chicago Joint Center for Poverty Research.
    29. Bernstein, Jeffrey I. & Nadiri, M. Ishaq, 1988. "Interindustry R&D, Rates of Return and Production in High-Tech Industries," Working Papers 88-04, C.V. Starr Center for Applied Economics, New York University.
    30. Cohen, Wesley M & Levin, Richard C & Mowery, David C, 1987. "Firm Size and R&D Intensity: A Re-examination," Journal of Industrial Economics, Wiley Blackwell, vol. 35(4), pages 543-565, June.
    31. Jean O. Lanjouw & Mark Schankerman, 1999. "The Quality of Ideas: Measuring Innovation with Multiple Indicators," NBER Working Papers 7345, National Bureau of Economic Research, Inc.
    32. Bernstein, Jeffrey I & Nadiri, M Ishaq, 1988. "Interindustry R&D Spillovers, Rates of Return, and Production in High-Tech Industries," American Economic Review, American Economic Association, vol. 78(2), pages 429-434, May.
    33. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    34. Robert J. Gordon, 1990. "The Measurement of Durable Goods Prices," NBER Books, National Bureau of Economic Research, Inc, number gord90-1.
    35. Jeffrey L. Furman & Scott Stern, 2006. "Climbing Atop the Shoulders of Giants: The Impact of Institutions on Cumulative Research," NBER Working Papers 12523, National Bureau of Economic Research, Inc.
    36. F. A. Lutz, 1961. "The Theory of Capital," International Economic Association Series, Palgrave Macmillan, number 978-1-349-08452-4 edited by D. C. Hague, December.
    37. Burnside, Craig, 1996. "Industry innovation: where and why A comment," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 44(1), pages 151-167, June.
    38. Rosenberg, Nathan, 1969. "The Direction of Technological Change: Inducement Mechanisms and Focusing Devices," Economic Development and Cultural Change, University of Chicago Press, vol. 18(1), pages 1-24, Part I Oc.
    39. Nicholas Kaldor, 1961. "Capital Accumulation and Economic Growth," International Economic Association Series, in: D. C. Hague (ed.), The Theory of Capital, chapter 0, pages 177-222, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Gobbi & Roberta Zizza, 2007. "Does the Underground Economy Hold Back Financial Deepening? Evidence from the Italian Credit Market," CEP Discussion Papers dp0789, Centre for Economic Performance, LSE.
    2. Benigno, Gianluca & Thoenissen, Christoph, 2008. "Consumption and real exchange rates with incomplete markets and non-traded goods," Journal of International Money and Finance, Elsevier, vol. 27(6), pages 926-948, October.
    3. Overman, Henry G. & Puga, Diego & Turner, Matthew A., 2008. "Decomposing the growth in residential land in the United States," Regional Science and Urban Economics, Elsevier, vol. 38(5), pages 487-497, September.
    4. Buiter, Willem H., 2007. "Seigniorage," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 1, pages 1-49.
    5. Alan Manning, 2010. "The plant size-place effect: agglomeration and monopsony in labour markets," Journal of Economic Geography, Oxford University Press, vol. 10(5), pages 717-744, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngai, Liwa Rachel & Samaniego, Roberto, 2007. "On the Long run Determinants of Industry TFP Growth Rates," CEPR Discussion Papers 6408, C.E.P.R. Discussion Papers.
    2. Ngai, L. Rachel & Samaniego, Roberto M., 2008. "Research and Productivity Growth Across Industries," LSE Research Online Documents on Economics 4410, London School of Economics and Political Science, LSE Library.
    3. Rachel Ngai & Roberto Samaniego, 2011. "Accounting for Research and Productivity Growth Across Industries," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(3), pages 475-495, July.
    4. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    5. Roberto M Samaniego, 2005. "Investment-Specific Technical Change and the Production of Ideas," Computing in Economics and Finance 2005 291, Society for Computational Economics.
    6. Samaniego, Roberto M., 2013. "Knowledge spillovers and intellectual property rights," International Journal of Industrial Organization, Elsevier, vol. 31(1), pages 50-63.
    7. Klette, Tor Jakob & Griliches, Zvi, 2000. "Empirical Patterns of Firm Growth and R&D Investment: A Quality Ladder Model Interpretation," Economic Journal, Royal Economic Society, vol. 110(463), pages 363-387, April.
    8. Jie Cai & Nan Li, 2019. "Growth Through Inter-sectoral Knowledge Linkages," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1827-1866.
    9. Klenow, Peter J., 1996. "Industry innovation: where and why," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 44(1), pages 125-150, June.
    10. Ponticelli, Jacopo & Bustos, Paula & Castro-Vincenzi, Juan & Monras, Joan, 2018. "Industrialization without Innovation," CEPR Discussion Papers 13379, C.E.P.R. Discussion Papers.
    11. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    12. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    13. Blankenau, William F. & Cassou, Steven P., 2006. "Labor market trends with balanced growth," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 807-842, May.
    14. Mr. Frederick L Joutz & Mr. Yasser Abdih, 2008. "The Impact of Public Capital, Human Capital, and Knowledge on Aggregate Output," IMF Working Papers 2008/218, International Monetary Fund.
    15. Patrizio Pagano & Massimo Sbracia, 2014. "The secular stagnation hypothesis: a review of the debate and some insights," Questioni di Economia e Finanza (Occasional Papers) 231, Bank of Italy, Economic Research and International Relations Area.
    16. Gancia, Gino & Zilibotti, Fabrizio, 2005. "Horizontal Innovation in the Theory of Growth and Development," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 3, pages 111-170, Elsevier.
    17. Hu, Mei-Chih & Mathews, John A., 2005. "National innovative capacity in East Asia," Research Policy, Elsevier, vol. 34(9), pages 1322-1349, November.
    18. Richard M. H. Suen, 2013. "Research Policy and U.S. Economic Growth," Working papers 2013-18, University of Connecticut, Department of Economics.
    19. Michael A. Verba, 2022. "Growth and innovation in the presence of knowledge and R&D accumulation dynamics," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(6), pages 485-510, August.
    20. Philippe Aghion & Benjamin F. Jones & Charles I. Jones, 2018. "Artificial Intelligence and Economic Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Endogenous technical change; multisector growth; fertility of knowledge; total factor productivity; R&D intensity; investment-specific technical change;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • D92 - Microeconomics - - Micro-Based Behavioral Economics - - - Intertemporal Firm Choice, Investment, Capacity, and Financing
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:cepdps:dp0762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://cep.lse.ac.uk/_new/publications/discussion-papers/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.