IDEAS home Printed from https://ideas.repec.org/p/cea/doctra/e2003_13.html
   My bibliography  Save this paper

Filter-Design and Model-Based Analysis of Economic Cycles

Author

Listed:

Abstract

Two possibilities of analysis of economic cycles are studied in this document. Firstly, filter-design approaches consisting of the extraction of the information content of certain signals between two specific frequencies, as well as below or above certain frequencies. Secondly, model-based approaches, in which the specific properties of cycles are left to automatic estimation procedures in most cases. This document highlights and takes advantage of the relation between both approaches. In particular, the cycle is defined as a given frequency band as is typical of the filter-design literature, but the information is effectively extracted by a model-based approach. The procedure is shown working in practice on two typical examples.

Suggested Citation

  • Diego J. Pedregal, 2003. "Filter-Design and Model-Based Analysis of Economic Cycles," Economic Working Papers at Centro de Estudios Andaluces E2003/13, Centro de Estudios Andaluces.
  • Handle: RePEc:cea:doctra:e2003_13
    as

    Download full text from publisher

    File URL: http://public.centrodeestudiosandaluces.es/pdfs/E200313.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew C. Harvey & Thomas M. Trimbur, 2003. "General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 244-255, May.
    2. Gomez, Victor, 2001. "The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 365-373, July.
    3. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    4. Unknown, 2001. "General Discussion," Proceedings of the 6th Agricultural and Food Policy Systems Information Workshop, 2000: Trade Liberalization Under NAFTA: Report Card on Agriculture 16839, Farm Foundation, Agricultural and Food Policy Systems Information Workshops.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew C. Harvey, 2002. "Trends, Cycles, and Convergence," Central Banking, Analysis, and Economic Policies Book Series, in: Norman Loayza & Raimundo Soto & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series Editor) (ed.),Economic Growth: Sources, Trends, and Cycles, edition 1, volume 6, chapter 8, pages 221-250, Central Bank of Chile.
    2. Jaqueson K. Galimberti & Marcelo L. Moura, 2011. "Improving the reliability of real-time Hodrick-Prescott filtering using survey forecasts," Centre for Growth and Business Cycle Research Discussion Paper Series 159, Economics, The University of Manchester.
    3. Thomas M. Trimbur, 2006. "Detrending economic time series: a Bayesian generalization of the Hodrick-Prescott filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 247-273.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    5. Martyna Marczak & Thomas Beissinger, 2013. "Real wages and the business cycle in Germany," Empirical Economics, Springer, vol. 44(2), pages 469-490, April.
    6. Tommaso Proietti, 2009. "Structural Time Series Models for Business Cycle Analysis," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 9, pages 385-433, Palgrave Macmillan.
    7. Galimberti, Jaqueson K. & Moura, Marcelo L., 2016. "Improving the reliability of real-time output gap estimates using survey forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 358-373.
    8. David Shepherd & Robert Dixon, 2008. "The Cyclical Dynamics and Volatility of Australian Output and Employment," The Economic Record, The Economic Society of Australia, vol. 84(264), pages 34-49, March.
    9. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    10. Barunik, Jozef & Krehlik, Tomas, 2016. "Measuring the frequency dynamics of financial and macroeconomic connectedness," FinMaP-Working Papers 54, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    11. Fernández-Amador, Octavio, 2016. "Finance-augmented business cycles: A robustness check," Papers 1038, World Trade Institute.
    12. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    13. Martyna Marczak & Víctor Gómez, 2017. "Monthly US business cycle indicators: a new multivariate approach based on a band-pass filter," Empirical Economics, Springer, vol. 52(4), pages 1379-1408, June.
    14. Harvey, A.C. & Trimbur, T.M. & van Dijk, H.K., 2004. "Bayes estimates of the cyclical component in twentieth centruy US gross domestic product," Econometric Institute Research Papers EI 2004-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Xiaoshan Chen & Terence Mills, 2012. "Measuring the Euro area output gap using a multivariate unobserved components model containing phase shifts," Empirical Economics, Springer, vol. 43(2), pages 671-692, October.
    16. Alessandra Iacobucci & Alain Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 75-102, February.
    17. Marlon Fritz, 2019. "Data-Driven Local Polynomial Trend Estimation for Economic Data - Steady State Adjusting Trends," Working Papers Dissertations 49, Paderborn University, Faculty of Business Administration and Economics.
    18. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    19. Emel Siklar & Ilyas Siklar, 2021. "Measuring and Analyzing the Common and Idiosyncratic Cycles: An Application for Turkish Manufacturing Industry," Business and Economic Research, Macrothink Institute, vol. 11(2), pages 279-300, June.
    20. Oh, Kum Hwa & Zivot, Eric & Creal, Drew, 2008. "The relationship between the Beveridge-Nelson decomposition and other permanent-transitory decompositions that are popular in economics," Journal of Econometrics, Elsevier, vol. 146(2), pages 207-219, October.

    More about this item

    Keywords

    Kalman Filter; Fixed Interval Smoother; Frequency Domain; Unobserved Components Models; State Space models.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cea:doctra:e2003_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susana Mérida (email available below). General contact details of provider: https://edirc.repec.org/data/fcanges.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.