IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt0wg3j51c.html
   My bibliography  Save this paper

Existence and Uniqueness of Semiparametric Projections

Author

Listed:
  • Komunjer, Ivana
  • Ragusa, Giuseppe

Abstract

In this paper we propose primitive conditions under which a projec- tion of a conditional density onto a set dened by conditional moment restric- tions exists and is unique. Moreover, we provide an analytic expression of the obtained projection. Our rst result is to show the existence when the moment function is bounded. The result is as we would expect from the analogous results obtained in the unconditional case. Our second result relaxes the boundedness assumption and replaces it with a correct specication condition. Showing that the correct specication of the moment function is sucient for the projection to exist is entirely new and not yet seen in the literature.

Suggested Citation

  • Komunjer, Ivana & Ragusa, Giuseppe, 2009. "Existence and Uniqueness of Semiparametric Projections," University of California at San Diego, Economics Working Paper Series qt0wg3j51c, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt0wg3j51c
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0wg3j51c.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    2. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    3. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    4. Komunjer, Ivana & Vuong, Quang, 2010. "Semiparametric Efficiency Bound In Time-Series Models For Conditional Quantiles," Econometric Theory, Cambridge University Press, vol. 26(2), pages 383-405, April.
    5. Zellner, Arnold & Tobias, Justin, 2001. "Further Results on Bayesian Method of Moments Analysis of the Multiple Regression Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 121-140, February.
    6. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    7. Otsu, Taisuke & Seo, Myung Hwan & Whang, Yoon-Jae, 2012. "Testing for non-nested conditional moment restrictions using unconditional empirical likelihood," Journal of Econometrics, Elsevier, vol. 167(2), pages 370-382.
    8. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    9. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    10. Sawa, Takamitsu, 1978. "Information Criteria for Discriminating among Alternative Regression Models," Econometrica, Econometric Society, vol. 46(6), pages 1273-1291, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomini, Raffaella & Ragusa, Giuseppe, 2014. "Theory-coherent forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 145-155.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komunjer, Ivana & Ragusa, Giuseppe, 2016. "Existence And Characterization Of Conditional Density Projections," Econometric Theory, Cambridge University Press, vol. 32(4), pages 947-987, August.
    2. Chen, Xiaohong & Hong, Han & Shum, Matthew, 2007. "Nonparametric likelihood ratio model selection tests between parametric likelihood and moment condition models," Journal of Econometrics, Elsevier, vol. 141(1), pages 109-140, November.
    3. Yu‐Chin Hsu & Xiaoxia Shi, 2017. "Model‐selection tests for conditional moment restriction models," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 52-85, February.
    4. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    5. In-Koo Cho & Kenneth Kasa, 2015. "Learning and Model Validation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 45-82.
    6. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    7. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    8. Susanne M. Schennach & Daniel Wilhelm, 2017. "A Simple Parametric Model Selection Test," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
    9. Richard Smith, 2005. "Weak instruments and empirical likelihood: a discussion of the papers by DWK Andrews and JH Stock and Y Kitamura," CeMMAP working papers CWP13/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Lavergne, Pascal, 2014. "Model equivalence tests in a parametric framework," Journal of Econometrics, Elsevier, vol. 178(P3), pages 414-425.
    11. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    12. Schorfheide, Frank & Moon, Hyungsik Roger, 2006. "Boosting Your Instruments: Estimation with Overidentifying Inequality Moment Conditions," CEPR Discussion Papers 5605, C.E.P.R. Discussion Papers.
    13. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    14. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    15. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    16. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Moon, Hyungsik Roger & Schorfheide, Frank, 2009. "Estimation with overidentifying inequality moment conditions," Journal of Econometrics, Elsevier, vol. 153(2), pages 136-154, December.
    18. Sueishi, Naoya, 2013. "Identification problem of the exponential tilting estimator under misspecification," Economics Letters, Elsevier, vol. 118(3), pages 509-511.
    19. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    20. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt0wg3j51c. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.