IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt6gd9s0bf.html
   My bibliography  Save this paper

Creating an Inclusive Bicycle Level of Service: Virtual Bicycle Simulator Study

Author

Listed:
  • Griswold, Julia B. PhD
  • Aguilar, Edna
  • Wang, Han
  • Miah, Md Mintu PhD

Abstract

Bicycle level of service (BLOS) is an essential performance measure for transportation agencies to monitor and prioritize improvements to infrastructure, but existing measures do not capture the nuance of facility differences on the state highway system. However, with the advancements in virtual reality (VR) technology, a VR bicycle simulator is an ideal tool to safely gather user feedback on a variety of bicycling environments and conditions. This research explored the benefits and limitations of using a VR environment to assess individuals’ bike infrastructure preferences. We conducted a bicyclist user experience survey in person on SafeTREC’s VR bicycle simulator and online and compared the results. The online survey consisted of showing participants pairs of VR videos of biking scenarios and asking them to choose the one that they preferred. To validate the online survey responses, we conducted in-person experiments with a VR bike simulator using the same pairs of videos. Our analysis indicates that 63 percent of the responses were consistent while a smaller percentage of responses (37 percent) changed after the simulator ride due to better perception provided by the simulator virtual environment. The outcome of this study helped to validate the online survey responses of the study.

Suggested Citation

  • Griswold, Julia B. PhD & Aguilar, Edna & Wang, Han & Miah, Md Mintu PhD, 2025. "Creating an Inclusive Bicycle Level of Service: Virtual Bicycle Simulator Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6gd9s0bf, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt6gd9s0bf
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6gd9s0bf.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Griswold, Julia B. & Yu, Mengqiao & Filingeri, Victoria & Grembek, Offer & Walker, Joan L., 2018. "A behavioral modeling approach to bicycle level of service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 166-177.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    2. Cai, Yangqian & Moreno, Ana Tsui, 2024. "Identifying non-universal heterogeneity of preferences of leisure cyclists for rural highway environments: A latent-class model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    3. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    4. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    5. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    6. Liang, Xiao & Zhang, Tianyu & Xie, Meiquan & Jia, Xudong, 2021. "Analyzing bicycle level of service using virtual reality and deep learning technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 115-129.
    7. Gabriella Mazzulla & Maria Grazia Bellizzi & Laura Eboli & Carmen Forciniti, 2021. "Cycling for a Sustainable Touristic Mobility: A Preliminary Study in an Urban Area of Italy," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    8. Cabral, Laura & Kim, Amy M., 2020. "An empirical reappraisal of the four types of cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 206-221.
    9. Xiaofei Ye & Yi Zhu & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Level of Service Model of the Non-Motorized Vehicle Crossing the Signalized Intersection Based on Riders’ Perception Data," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    10. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    11. Fitch, Dillon T. & Carlen, Jane & Handy, Susan L., 2022. "What makes bicyclists comfortable? Insights from a visual preference survey of casual and prospective bicyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 434-449.
    12. Fitch, Dillon & Carlen, Jane & Handy, Susan, 2020. "Making Bicycling Comfortable: Identifying Minimum Infrastructure Needs by Population Segments Using a Video Survey," Institute of Transportation Studies, Working Paper Series qt7jn8h79x, Institute of Transportation Studies, UC Davis.
    13. Qiyao Yang & Jun Cai & Tao Feng & Zhengying Liu & Harry Timmermans, 2021. "Bikeway Provision and Bicycle Commuting: City-Level Empirical Findings from the US," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    14. Wei Wang & Zhentian Sun & Liya Wang & Shanshan Yu & Jun Chen, 2020. "Evaluation Model for the Level of Service of Shared-Use Paths Based on Traffic Conflicts," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    15. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6gd9s0bf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.