IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt3hh2t4f9.html
   My bibliography  Save this paper

Intelligent Transportation Systems

Author

Listed:
  • Shaheen, Susan PhD
  • Finson, Rachel

Abstract

Intelligent transportation systems (ITS) represent a group of technologies that can improve transportation system management and public transit, as well as individual decisions surrounding many aspects of travel. ITS technologies include state-of-the art wireless, electronic, and automated technologies with a goal to improve surface transportation safety, efficiency, and convenience. Reducing energy consumption, while not a primary goal for ITS, is a demonstrated ITS benefit in certain circumstances. This paper reviews and summarizes key energy benefits associated with a variety of ITS technologies that have been documented through models, pilot programs/field tests, and full-scale deployment.

Suggested Citation

  • Shaheen, Susan PhD & Finson, Rachel, 2013. "Intelligent Transportation Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3hh2t4f9, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt3hh2t4f9
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3hh2t4f9.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaheen, Susan PhD & Cohen, Adam & Martin, Elliot PhD, 2013. "Public Bikesharing in North America: Early Operator Understanding and Emerging Trends," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1x26m6z7, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    2. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    3. Sanjay Gupta & Kushagra Sinha, 2022. "Assessing the Factors Impacting Transport Usage of Mobility App Users in the National Capital Territory of Delhi, India," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    4. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    5. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    6. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    7. Contreras, Seth D. & Paz, Alexander, 2018. "The effects of ride-hailing companies on the taxicab industry in Las Vegas, Nevada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 115(C), pages 63-70.
    8. Dandan Xu & Yang Bian & Shinan Shu, 2020. "Research on the Psychological Model of Free-floating Bike-Sharing Using Behavior: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    9. Dafeng Xu, 2020. "Free Wheel, Free Will! The Effects of Bikeshare Systems on Urban Commuting Patterns in the U.S," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(3), pages 664-685, June.
    10. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    11. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    12. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    13. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    15. Yang, Hongtai & Huo, Jinghai & Bao, Yongxing & Li, Xuan & Yang, Linchuan & Cherry, Christopher R., 2021. "Impact of e-scooter sharing on bike sharing in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 23-36.
    16. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    17. Xuefeng Li & Yong Zhang & Li Sun & Qiyang Liu, 2018. "Free-Floating Bike Sharing in Jiangsu: Users’ Behaviors and Influencing Factors," Energies, MDPI, vol. 11(7), pages 1-18, June.
    18. Shaheen, Susan PhD & Cohen, Adam, 2019. "Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt00k897b5, Institute of Transportation Studies, UC Berkeley.
    19. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    20. Sohrabi, Soheil & Paleti, Rajesh & Balan, Lacramioara & Cetin, Mecit, 2020. "Real-time prediction of public bike sharing system demand using generalized extreme value count model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 325-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt3hh2t4f9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.