IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt1hm6760x.html
   My bibliography  Save this paper

Warm-Mix Asphalt Study: Laboratory Test Results for AkzoNobel RedisetTM WMX

Author

Listed:
  • Jones, David
  • Tsai, Bor-Wen
  • Signore, James

Abstract

This report describes a laboratory testing study that compared the performance of a control mix, produced and compacted at conventional hot-mix asphalt temperatures, with a mix containing RedisetTM WMX warm-mix additive (referred to in this report as Rediset), produced and compacted at approximately 35°C (63°F) lower than the control. Key findings from the study include: No problems were noted with producing and compacting the Rediset mix at the lower temperatures in the laboratory. The air-void contents of individual specimens were similar for both mixes, indicating that satisfactory laboratory-mixed and compacted specimens can be prepared with the warm mix. Interviews with laboratory staff revealed that no problems were experienced with preparing specimens at the lower temperatures. Improved and safer working conditions at the lower temperatures were identified as an advantage. The laboratory test results indicate that use of the Rediset warm-mix asphalt additive assessed in this study, produced and compacted at lower temperatures, does not significantly influence the performance of the asphalt concrete when compared to control specimens produced and compacted at conventional hot-mix asphalt temperatures. In the shear, fatigue, Hamburg Wheel Track, and Cantabro tests, the results and trends in the results indicated similar performance between the two mixes, and between the two mixes and the Control mix tested in an earlier study on warm-mix asphalt undertaken for the California Department of Transportation (Caltrans). Minor differences in the results of these tests were attributed to the inherent variability of these tests and less oxidation of the binder in the Rediset specimens due to its lower mixing temperature. In the Tensile Strength Retained Test, the Rediset mix had significantly better moisture resistance compared to the Control mix in this study as well as the Control mix in the earlier Caltrans study. The laboratory testing completed in this study has provided no results to suggest that RedisetTM WMX warm-mix additive should not be used to produce and place asphalt concrete at lower temperatures. These results should be be verified in pilot studies on in-service pavements. The results of the Tensile Strength Retained test indicate that the use of Rediset could improve the moisture resistance of moisture sensitive mixes. This should be investigated further along with additional Hamburg Wheel Track tests on oven aged/cured samples to assess the effect of shortterm curing on the results of this test.

Suggested Citation

  • Jones, David & Tsai, Bor-Wen & Signore, James, 2010. "Warm-Mix Asphalt Study: Laboratory Test Results for AkzoNobel RedisetTM WMX," Institute of Transportation Studies, Working Paper Series qt1hm6760x, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt1hm6760x
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/1hm6760x.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jones, David & Wu, Rongzong & Tsai, Bor-Wen & Lu, Qing & Harvey, John T., 2008. "Warm-Mix Asphalt Study: Test Track Construction and First-Level Analysis of Phase 1 HVS and Laboratory Testing," Institute of Transportation Studies, Working Paper Series qt6tc86078, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julide Oner & Burak Sengoz, 2015. "Utilization of Recycled Asphalt Concrete with Warm Mix Asphalt and Cost-Benefit Analysis," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, D., 2014. "Warm-Mix Asphalt Study: Summary Report on Warm-Mix Asphalt Research in California," Institute of Transportation Studies, Working Paper Series qt6pp4p46t, Institute of Transportation Studies, UC Davis.
    2. Farshidi, F. & Jones, D. & Harvey, J. T., 2013. "Warm-Mix Asphalt Study: Evaluation of Rubberized Hot- and Warm-Mix Asphalt with Respect to Emissions," Institute of Transportation Studies, Working Paper Series qt24x065cd, Institute of Transportation Studies, UC Davis.
    3. Jones, David & Farshidi, Frank & Harvey, John T., 2013. "Warm-Mix Asphalt Study: Summary Report on Rubberized Warm-Mix Asphalt Research," Institute of Transportation Studies, Working Paper Series qt1gs139mk, Institute of Transportation Studies, UC Davis.
    4. Farshidi, Frank & Jones, David & Harvey, John T., 2013. "Warm-Mix Asphalt Study: Evaluation of Hot and Warm Mix Asphalt with Respect to Binder Aging," Institute of Transportation Studies, Working Paper Series qt91x0c3hd, Institute of Transportation Studies, UC Davis.
    5. Jones, D. & Tsai, B., 2012. "Warm-Mix Asphalt Study: First-Level Analysis of Phase 2b Laboratory Testing on Laboratory-Prepared Specimens," Institute of Transportation Studies, Working Paper Series qt39c2g14q, Institute of Transportation Studies, UC Davis.
    6. Jones, D., 2013. "Warm-Mix Asphalt Study: Field Test Performance Evaluation," Institute of Transportation Studies, Working Paper Series qt4bp7602f, Institute of Transportation Studies, UC Davis.
    7. Jones, David & Wu, Rongzong & Tsai, Bor-Wen & Harvey, John T., 2011. "Warm-Mix Asphalt Study: Test Track Construction and FirstLevel Analysis of Phase 3b HVS and Laboratory Testing (Rubberized Asphalt, Mix Design #2)," Institute of Transportation Studies, Working Paper Series qt8j93g6t2, Institute of Transportation Studies, UC Davis.
    8. Jones, David & Wu, Rongzong & Tsai, Bor-Wen & Harvey, John T., 2009. "Warm-Mix Asphalt Study: First-Level Analysis of Phase 2 HVS and Laboratory Testing, and Phase 1 and Phase 2 Forensic Assessments," Institute of Transportation Studies, Working Paper Series qt9ws8s626, Institute of Transportation Studies, UC Davis.
    9. Jones, David & Wu, Rongzong & Tsai, Bor-Wen & Harvey, John T., 2011. "Warm-Mix Asphalt Study: Test Track Construction and First-Level Analysis of Phase 3a HVS and Laboratory Testing (Rubberized Asphalt, Mix Design #1)," Institute of Transportation Studies, Working Paper Series qt9958p8fc, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt1hm6760x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.