IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt16x9z6s8.html
   My bibliography  Save this paper

Near-term trends in China's coal consumption

Author

Listed:
  • Lin, J
  • Fridley, D
  • Lu, H
  • Price, L
  • Zhou, N

Abstract

Coal combustion to power China’s factories, generate electricity, and heat buildings has increased continually since energy use statistics were first published in 1981. From 2013 until 2015, however, this trend reversed and coal use continued to decline from 2,810 million metric tons of coal equivalent (Mtce) to 2,752 Mtce, leading to a levelling off of China’s overall CO2 emissions. Some analysts have declared that China’s coal consumption may have peaked, but preliminary data indicate that coal consumption increased in 2017. This recent growth, combined with our analysis of projected increases in electricity demand that cannot be met by other fossil-fuel or non-fossil-fuel electricity sources, along with projected increases in coal use in light manufacturing, other non-industrial sectors, as well as in coal use for transformation, indicates potential future growth of China’s coal use to levels of 2,908 Mtce to 3,060 Mtce in 2020, with associated increases in energy-related CO2 emissions.

Suggested Citation

  • Lin, J & Fridley, D & Lu, H & Price, L & Zhou, N, 2018. "Near-term trends in China's coal consumption," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt16x9z6s8, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt16x9z6s8
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/16x9z6s8.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinyi Huang & Yu Zhang, 2021. "Decoupling and Decomposition Analysis of Agricultural Carbon Emissions: Evidence from Heilongjiang Province, China," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    2. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    3. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    4. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    5. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    6. Chun Yang & Shaohua Tan & Hantao Zhou & Wei Zeng, 2024. "Towards Sustainable Rural Development: Assessment Spatio-Temporal Evolution of Rural Ecosystem Health through Integrating Ecosystem Integrity and SDGs," Land, MDPI, vol. 13(10), pages 1-25, October.
    7. Yang, Jie & Huang, Yijing & Takeuchi, Kenji, 2022. "Does drought increase carbon emissions? Evidence from Southwestern China," Ecological Economics, Elsevier, vol. 201(C).
    8. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    9. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    10. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    11. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    12. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    13. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    14. Chunli Zhou & Yuze Tang & Deyan Zhu & Zhiwei Cui, 2024. "Tracking the Carbon Emissions Using Electricity Big Data: A Case Study of the Metal Smelting Industry," Energies, MDPI, vol. 17(3), pages 1-19, January.
    15. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    16. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    17. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    18. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    19. Xin-Cheng Meng & Yeon-Ho Seong & Min-Kyu Lee, 2021. "Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021," Energies, MDPI, vol. 14(16), pages 1-20, August.
    20. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt16x9z6s8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.