IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/9602009.html
   My bibliography  Save this paper

Bootstrap Methods in Econometrics: Theory and Numerical Performance

Author

Listed:
  • Joel L. Horowitz

    (Univ. of Iowa)

Abstract

The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one's data. It amounts to treating the data as if they were the population for the purpose of evaluating the distribution of interest. Under mild regularity conditions, the bootstrap yields an approximation to the distribution of an estimator or test statistic that is at least as accurate as the approximation obtained from first-order asymptotic theory. Thus, the bootstrap provides a way to substitute computation for mathematical analysis if calculating the asymptotic distribution of an estimator or statistic is difficult. The maximum score estimator Manski (1975, 1985), the statistic developed by Ha..rdle et al. (1991) for testing positive- definiteness of income-effect matrices, and certain functions of time- series data (Blanchard and Quah 1989, Runkle 1987, West 1990) are examples in which evaluating the asymptotic distribution is difficult and bootstrapping has been used as an alternative.1 In fact, the bootstrap is often more accurate in finite samples than first-order asymptotic approximations but does not entail the algebraic complexity of higher-order expansions. Thus, it can provide a practical method for improving upon first-order approximations. First-order asymptotic theory often gives a poor approximation to the distributions of test statistics with the sample sizes available in applications. As a result, the nominal levels of tests based on asymptotic critical values can be very different from the true levels. The information matrix test of White(1982) is a well-known example of a test in which large finite- sample distortions of level can occur when asymptotic critical values are used (Horowitz 1994, Kennan and Neumann 1988, Orme 1990, Taylor 1987). Other illustrations are given later in this chapter. The bootstrap often provides a tractable way to reduce or eliminate finite- sample distortions of the levels of statistical tests.

Suggested Citation

  • Joel L. Horowitz, 1996. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Econometrics 9602009, University Library of Munich, Germany, revised 05 Mar 1996.
  • Handle: RePEc:wpa:wuwpem:9602009
    Note: Zipped using PKZIP v2.04, encoded using UUENCODE v5.15. Zipped file includes 1 files -- ui9510.wpa (body in MSWord, 45 pages);
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9602/9602009.pdf
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9602/9602009.ps.gz
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    4. Horowitz, Joel L., 1994. "Bootstrap-based critical values for the information matrix test," Journal of Econometrics, Elsevier, vol. 61(2), pages 395-411, April.
    5. Hardle, Wolfgang & Hildenbrand, Werner & Jerison, Michael, 1991. "Empirical Evidence on the Law of Demand," Econometrica, Econometric Society, vol. 59(6), pages 1525-1549, November.
    6. Härdle, Wolfgang & Hart, Jeffrey D., 1992. "A Bootstrap Test for Positive Definiteness of Income Effect Matrices," Econometric Theory, Cambridge University Press, vol. 8(2), pages 276-292, June.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    9. Hillier, Grant H., 1985. "On the Joint and Marginal Densities of Instrumental Variable Estimators in a General Structural Equation," Econometric Theory, Cambridge University Press, vol. 1(1), pages 53-72, April.
    10. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    11. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    12. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    13. Lancaster, Tony, 1984. "The Covariance Matrix of the Information Matrix Test," Econometrica, Econometric Society, vol. 52(4), pages 1051-1053, July.
    14. Gregory, Allan W & Veall, Michael R, 1985. "Formulating Wald Tests of Nonlinear Restrictions," Econometrica, Econometric Society, vol. 53(6), pages 1465-1468, November.
    15. Chesher, Andrew & Jewitt, Ian, 1987. "The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 55(5), pages 1217-1222, September.
    16. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    17. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    18. repec:cup:etheor:v:8:y:1992:i:2:p:276-90 is not listed on IDEAS
    19. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    20. Lafontaine, Francine & White, Kenneth J., 1986. "Obtaining any Wald statistic you want," Economics Letters, Elsevier, vol. 21(1), pages 35-40.
    21. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    2. Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Fuhrer, Jeffrey C. & Moore, George R. & Schuh, Scott D., 1995. "Estimating the linear-quadratic inventory model Maximum likelihood versus generalized method of moments," Journal of Monetary Economics, Elsevier, vol. 35(1), pages 115-157, February.
    4. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    5. Jean-Marie Dufour & Alain Trognon & Purevdorj Tuvaandorj, 2017. "Invariant tests based on M -estimators, estimating functions, and the generalized method of moments," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 182-204, March.
    6. Eric S. Lin & Ta-Sheng Chou, 2018. "Finite-sample refinement of GMM approach to nonlinear models under heteroskedasticity of unknown form," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 1-28, January.
    7. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    8. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    9. Alastair R. Hall, 2013. "Generalized Method of Moments," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 14, pages 313-333, Edward Elgar Publishing.
    10. Pakoš, Michal, 2011. "Estimating Intertemporal and Intratemporal Substitutions When Both Income and Substitution Effects Are Present: The Role of Durable Goods," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 439-454.
    11. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    12. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    13. Craig Burnside & Martin Eichenbaum, 1994. "Small Sample Properties of Generalized Method of Moments Based Wald Tests," NBER Technical Working Papers 0155, National Bureau of Economic Research, Inc.
    14. Patrick Fève & François Langot, 1995. "La méthode des moments généralisés et ses extensions : théorie et applications en macro-économie," Économie et Prévision, Programme National Persée, vol. 119(3), pages 139-170.
    15. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    16. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    17. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    18. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    19. Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Econometrics 0111003, University Library of Munich, Germany.
    20. Ogaki, Masao & Park, Joon Y., 1997. "A cointegration approach to estimating preference parameters," Journal of Econometrics, Elsevier, vol. 82(1), pages 107-134.
    21. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9602009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.