IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/0609.html
   My bibliography  Save this paper

Electricity Network Scenarios for Great Britain in 2050

Author

Listed:
  • Elders, I.
  • Ault, G.
  • Galloway, S.
  • McDonald, J.
  • Köhler, J.
  • Leach, M.
  • Lampaditou , E.

Abstract

The next fifty years are likely to see great developments in the technologies deployed in electricity systems, with consequent changes in the structure and operation of power networks. This paper, which forms a chapter in the forthcoming book Future Electricity T echnologies and Systems, develops and presents six possible future electricity industry scenarios for Great Britain, focussed on the year 2050. The paper draws upon discussions of important technologies presented by expert authors in other chapters of the book to consider the impact of different combinations of key influences on the nature of the power system in 2050. For each scenario there is a discussion of the effects of the key parameters, with a description and pictorial illustration. Summary tables identify the role of the technologies presented in other chapters of the book, and list important figures of interest, such as the capacity and energy production of renewable generation technologies.

Suggested Citation

  • Elders, I. & Ault, G. & Galloway, S. & McDonald, J. & Köhler, J. & Leach, M. & Lampaditou , E., 2006. "Electricity Network Scenarios for Great Britain in 2050," Cambridge Working Papers in Economics 0609, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:0609
    Note: IO
    as

    Download full text from publisher

    File URL: http://www.electricitypolicy.org.uk/pubs/wp/eprg0513.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neuhoff, Karsten & De Vries, Laurens, 2004. "Insufficient incentives for investment in electricity generations," Utilities Policy, Elsevier, vol. 12(4), pages 253-267, December.
    2. Karsten Neuhoff & Laurens De Vries, 2004. "Insufficient Incentives for Investment," Working Papers EP42, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robertson, Elizabeth & O'Grady, Áine & Barton, John & Galloway, Stuart & Emmanuel-Yusuf, Damiete & Leach, Matthew & Hammond, Geoff & Thomson, Murray & Foxon, Tim, 2017. "Reconciling qualitative storylines and quantitative descriptions: An iterative approach," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 293-306.
    2. Alderson, Helen & Cranston, Gemma R. & Hammond, Geoffrey P., 2012. "Carbon and environmental footprinting of low carbon UK electricity futures to 2050," Energy, Elsevier, vol. 48(1), pages 96-107.
    3. Hammond, Geoffrey P. & Howard, Hayley R. & Jones, Craig I., 2013. "The energy and environmental implications of UK more electric transition pathways: A whole systems perspective," Energy Policy, Elsevier, vol. 52(C), pages 103-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    2. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    3. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    4. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    5. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    6. Adrien de Hauteclocque & Jean-Michel Glachant, 2011. "Long-term Contracts and Competition Policy in European Energy Markets," Chapters, in: Jean-Michel Glachant & Dominique Finon & Adrien de Hauteclocque (ed.), Competition, Contracts and Electricity Markets, chapter 9, Edward Elgar Publishing.
    7. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    8. Roques, F.A. & Savva , N.S., 2006. "Price Cap Regulation and Investment Incentives under Demand Uncertainty," Cambridge Working Papers in Economics 0636, Faculty of Economics, University of Cambridge.
    9. De Vries, Laurens J., 2007. "Generation adequacy: Helping the market do its job," Utilities Policy, Elsevier, vol. 15(1), pages 20-35, March.
    10. Simshauser, Paul & Tian, Yuan & Whish-Wilson, Patrick, 2015. "Vertical integration in energy-only electricity markets," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 35-56.
    11. Hauteclocque, Adrien de & Glachant, Jean-Michel, 2009. "Long-term energy supply contracts in European competition policy: Fuzzy not crazy," Energy Policy, Elsevier, vol. 37(12), pages 5399-5407, December.
    12. Guy Meunier, 2014. "Risk Aversion and Technology Portfolios," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(4), pages 347-365, June.
    13. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    14. Roques, Fabien A., 2008. "Market design for generation adequacy: Healing causes rather than symptoms," Utilities Policy, Elsevier, vol. 16(3), pages 171-183, September.
    15. Parlane, Sarah & Ryan, Lisa, 2020. "Optimal contracts for renewable electricity," Energy Economics, Elsevier, vol. 91(C).
    16. Grubb, Michael & Butler, Lucy & Twomey, Paul, 2006. "Diversity and security in UK electricity generation: The influence of low-carbon objectives," Energy Policy, Elsevier, vol. 34(18), pages 4050-4062, December.
    17. Roques, F. & Newbery, D.M. & Nuttall, W.J., 2004. "Generation Adequacy and Investment Incentives in Britain: from the Pool to NETA," Cambridge Working Papers in Economics 0459, Faculty of Economics, University of Cambridge.
    18. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    19. Dane A. Schiro & Benjamin F. Hobbs & Jong-Shi Pang, 2016. "Perfectly competitive capacity expansion games with risk-averse participants," Computational Optimization and Applications, Springer, vol. 65(2), pages 511-539, November.
    20. Abate, Arega Getaneh & Riccardi, Rossana & Ruiz, Carlos, 2021. "Contracts in electricity markets under EU ETS: A stochastic programming approach," Energy Economics, Elsevier, vol. 99(C).

    More about this item

    Keywords

    Energy technology; electricity; sustainable development; environment;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.