IDEAS home Printed from https://ideas.repec.org/p/bri/uobdis/04-563.html
   My bibliography  Save this paper

Stochastic Trends, Demographics and Demand Systems

Author

Listed:
  • Clifford Attfield

Abstract

Techniques for determining the number of stochastic trends generating a set of non-stationary panel data are applied to budget shares for a number of commodity groups from the Family Expenditure Survey (FES) for the UK for the years 1973-2001. It is argued that some stochastic trends in macro data are generated by the aggregation of fixed demographic effects in the micro data. From cross section data, fixed effect coefficients are estimated which incorporate both age and income distribution effects. The estimated coefficients are combined with age proportion variables to form a set of I(1) indices for broad commodity groups which are then incorporated into a system of aggregate demand equations. The equations are estimated and tested in a non-stationary time series setting.

Suggested Citation

  • Clifford Attfield, 2004. "Stochastic Trends, Demographics and Demand Systems," Bristol Economics Discussion Papers 04/563, School of Economics, University of Bristol, UK.
  • Handle: RePEc:bri:uobdis:04/563
    as

    Download full text from publisher

    File URL: http://www.bristol.ac.uk/efm/media/workingpapers/working_papers/pdffiles/dp04563.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ng, Serena, 1995. "Testing for Homogeneity in Demand Systems When the Regressors Are Nonstationary," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 147-163, April-Jun.
    2. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(3), pages 435-463.
    3. Lewbel, Arthur, 1996. "Aggregation without Separability: A Generalized Composite Commodity Theorem," American Economic Review, American Economic Association, vol. 86(3), pages 524-543, June.
    4. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. James Banks & Richard Blundell & Arthur Lewbel, 1997. "Quadratic Engel Curves And Consumer Demand," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 527-539, November.
    7. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    8. Blundell, Richard & Pashardes, Panos & Weber, Guglielmo, 1993. "What Do We Learn About Consumer Demand Patterns from Micro Data?," American Economic Review, American Economic Association, vol. 83(3), pages 570-597, June.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    11. Osterwald-Lenum, Michael, 1992. "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 461-472, August.
    12. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    13. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    14. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Pieroni & D. Lanari & L. Salmasi, 2013. "Food prices and overweight patterns in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(1), pages 133-151, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Lewbel & Serena Ng, 2005. "Demand Systems with Nonstationary Prices," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 479-494, August.
    2. Frauke Dobnik, 2013. "Long-run money demand in OECD countries: what role do common factors play?," Empirical Economics, Springer, vol. 45(1), pages 89-113, August.
    3. Pedroni, Peter L. & Vogelsang, Timothy J. & Wagner, Martin & Westerlund, Joakim, 2015. "Nonparametric rank tests for non-stationary panels," Journal of Econometrics, Elsevier, vol. 185(2), pages 378-391.
    4. Jushan Bai & Josep Lluís Carrion‐i‐Silvestre, 2013. "Testing panel cointegration with unobservable dynamic common factors that are correlated with the regressors," Econometrics Journal, Royal Economic Society, vol. 16(2), pages 222-249, June.
    5. Dobnik, Frauke, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 303, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    6. Breitung, Jörg & Pesaran, Mohammad Hashem, 2005. "Unit roots and cointegration in panels," Discussion Paper Series 1: Economic Studies 2005,42, Deutsche Bundesbank.
    7. Clifford Attfield, 2004. "A Comparison of the Translog and Almost Ideal Demand Models," Bristol Economics Discussion Papers 04/564, School of Economics, University of Bristol, UK.
    8. Wagner, Martin, 2008. "The carbon Kuznets curve: A cloudy picture emitted by bad econometrics?," Resource and Energy Economics, Elsevier, vol. 30(3), pages 388-408, August.
    9. Alejandro C. García-Cintado & Diego Romero-Ávila & Carlos Usabiaga, 2016. "The economic integration of Spain: a change in the inflation pattern," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-41, December.
    10. Frauke Dobnik, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 0303, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    11. repec:zbw:rwirep:0303 is not listed on IDEAS
    12. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    13. Blundell, Richard & Robin, Jean Marc, 1999. "Estimation in Large and Disaggregated Demand Systems: An Estimator for Conditionally Linear Systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 209-232, May-June.
    14. Douglas Fisher & Adrian R. Fleissig & Apostolos Serletis, 2006. "An Empirical Comparison of Flexible Demand System Functional Forms," World Scientific Book Chapters, in: Money And The Economy, chapter 13, pages 247-277, World Scientific Publishing Co. Pte. Ltd..
    15. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    16. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2017. "Structural FECM: Cointegration in large‐scale structural FAVAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1069-1086, September.
    17. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    18. Martin Wagner, 2008. "On PPP, unit roots and panels," Empirical Economics, Springer, vol. 35(2), pages 229-249, September.
    19. von Borstel, Julia & Eickmeier, Sandra & Krippner, Leo, 2016. "The interest rate pass-through in the euro area during the sovereign debt crisis," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 386-402.
    20. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    21. Onatski, Alexei & Wang, Chen, 2019. "Extreme canonical correlations and high-dimensional cointegration analysis," Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.

    More about this item

    Keywords

    Demand Equations; Age Demographics; Stochastic Trends.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • D1 - Microeconomics - - Household Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bri:uobdis:04/563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vicky Jackson (email available below). General contact details of provider: https://edirc.repec.org/data/sebriuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.