IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2011-052.html
   My bibliography  Save this paper

Testing for Trend in the Presence of Autoregressive Error: A Comment

Author

Listed:
  • Pierre Perron

    (Department of Economics, Boston University)

  • Tomoyoshi Yabu

    (Faculty of Business and Commerce, Keio University)

Abstract

Roy, Falk and Fuller (2004) presented a procedure aimed at providing a test for the value of the slope of a trend function that has (nearly) controlled size in autoregressive models whether the noise component is stationary or has a unit root. In this note, we document errors in both their theoretical results and the simulations they reported. Once these are corrected for, their procedure delivers a test that has very liberal size in the case with a unit root so that the stated goal is not achieved. Interestingly, the mistakes in the code used to generate the simulated results (which is the basis for the evidence about the reliability of the method) are such that what they report is essentially equivalent to the size and power of the test proposed by Perron and Yabu (2009), which was shown to have the standard Normal distribution whether the noise is stationary or has a unit root.

Suggested Citation

  • Pierre Perron & Tomoyoshi Yabu, 2011. "Testing for Trend in the Presence of Autoregressive Error: A Comment," Boston University - Department of Economics - Working Papers Series WP2011-052, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2011-052
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Estimating deterministic trends with an integrated or stationary noise component," Journal of Econometrics, Elsevier, vol. 151(1), pages 56-69, July.
    2. Anindya Roy & Barry Falk & Wayne A. Fuller, 2004. "Testing for Trend in the Presence of Autoregressive Error," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1082-1091, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josep Lluís Carrion‐i‐Silvestre & María Dolores Gadea & Antonio Montañés, 2021. "Nearly Unbiased Estimation of Autoregressive Models for Bounded Near‐Integrated Stochastic Processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 273-297, February.
    2. Pierre Perron & Mototsugu Shintaniz & Tomoyoshi Yabu, 2020. "Trigonometric Trend Regressions of Unknown Frequencies with Stationary or Integrated Noise," Boston University - Department of Economics - Working Papers Series WP2020-012, Boston University - Department of Economics.
    3. Pierre Perron & Mototsugu Shintani & Tomoyoshi Yabu, 2017. "Testing for Flexible Nonlinear Trends with an Integrated or Stationary Noise Component," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 822-850, October.
    4. Jiawen Xu & Pierre Perron, 2013. "Robust testing of time trend and mean with unknown integration order errors Frequency (and Other) Contaminations," Boston University - Department of Economics - Working Papers Series 2013-006, Boston University - Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    2. Josep Lluís Carrion-i-Silvestre & María Dolores Gadea & Antonio Montañés, 2017. "“Unbiased estimation of autoregressive models forbounded stochastic processes," AQR Working Papers 201710, University of Barcelona, Regional Quantitative Analysis Group, revised Dec 2017.
    3. Badi Baltagi & Chihwa Kao & Long Liu, 2014. "Test of Hypotheses in a Time Trend Panel Data Model with Serially Correlated Error Component Disturbances," Center for Policy Research Working Papers 170, Center for Policy Research, Maxwell School, Syracuse University.
    4. Erhua Zhang & Xiaojun Song & Jilin Wu, 2022. "A non‐parametric test for multi‐variate trend functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 856-871, November.
    5. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
    6. David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2010. "The impact of the initial condition on robust tests for a linear trend," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 292-302, July.
    7. Pierre Perron & Mototsugu Shintani & Tomoyoshi Yabu, 2017. "Testing for Flexible Nonlinear Trends with an Integrated or Stationary Noise Component," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 822-850, October.
    8. Badi H. Baltagi & Chihwa Kao & Long Liu, 2014. "Test of Hypotheses in a Time Trend Panel Data Model with Serially Correlated Error Component Disturbances," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 347-394, Emerald Group Publishing Limited.
    9. Astill, Sam & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2014. "Robust tests for a linear trend with an application to equity indices," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 168-185.
    10. Pierre Perron & Mototsugu Shintaniz & Tomoyoshi Yabu, 2020. "Trigonometric Trend Regressions of Unknown Frequencies with Stationary or Integrated Noise," Boston University - Department of Economics - Working Papers Series WP2020-012, Boston University - Department of Economics.
    11. Xu, Ke-Li, 2016. "Multivariate trend function testing with mixed stationary and integrated disturbances," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 38-57.
    12. Jiawen Xu & Pierre Perron, 2013. "Robust testing of time trend and mean with unknown integration order errors Frequency (and Other) Contaminations," Boston University - Department of Economics - Working Papers Series 2013-006, Boston University - Department of Economics.
    13. Josep Lluís Carrion‐i‐Silvestre & María Dolores Gadea & Antonio Montañés, 2021. "Nearly Unbiased Estimation of Autoregressive Models for Bounded Near‐Integrated Stochastic Processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 273-297, February.
    14. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    15. Elliott, Graham, 2020. "Testing for a trend with persistent errors," Journal of Econometrics, Elsevier, vol. 219(2), pages 314-328.
    16. Mohsen Bahmani-Oskooee & Tsangyao Chang & Zahra (Mila) Elmi & Omid Ranjbar, 2018. "Re-testing Prebisch–Singer hypothesis: new evidence using Fourier quantile unit root test," Applied Economics, Taylor & Francis Journals, vol. 50(4), pages 441-454, January.
    17. Ghoshray, Atanu, 2021. "Are coffee farmers worse off in the long run?," 95th Annual Conference, March 29-30, 2021, Warwick, UK (Hybrid) 311084, Agricultural Economics Society - AES.
    18. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    19. László KÓNYA, 2023. "Per Capita Income Convergence and Divergence of Selected OECD Countries to and from the US: A Reappraisal for the period 1900-2018," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 23(1), pages 33-56.
    20. Anton Skrobotov, 2015. "Trend and Initial Condition in Stationarity Tests: The Asymptotic Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 254-273, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2011-052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.