IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2006-016.html
   My bibliography  Save this paper

An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility

Author

Listed:
  • Pierre Perron

    (Department of Economics, Boston University)

  • Zhongjun Qu

    (Department of Economics, Boston University)

Abstract

Recently, there has been an upsurge of interest on the possibility of confusing long memory and structural changes in level. Many studies have documented the fact that when a stationary short memory process is contaminated by level shifts the estimate of the fractional differencing parameter is biased away from zero and the autocovariance function exhibits a slow rate of decay, akin to a long memory process. Yet, no theoretical results are available pertaining to the distributions of the estimates. We fill this gap by analyzing the properties of the log periodogram estimate when the jump component is specified by a simple mixture model. Our theoretical results explain many findings reported and uncover new features. Simulations are presented to highlight the properties of the distributions and to assess the adequacy of our limit results as approximations to the finite sample distributions. Also, we explain how the limit distribution changes as the number of frequencies used varies, a feature that is different from the case with a pure fractionally integrated model. We confront this practical implication to daily SP500 absolute returns and their square roots over the period 1928-2002. Our findings are remarkable, the path of the log periodogram estimates clearly follows a pattern that would obtain if the true underlying process was one of short-memory contaminated by level shifts instead of a pure fractionally integrated process. A simple testing procedure is also proposed, which reinforces this conclusion.

Suggested Citation

  • Pierre Perron & Zhongjun Qu, 2006. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility," Boston University - Department of Economics - Working Papers Series WP2006-016, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2006-016
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    5. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    6. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    7. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    8. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    9. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    10. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    11. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    12. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    13. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    14. Gourieroux, Christian & Jasiak, Joann, 2001. "Memory and infrequent breaks," Economics Letters, Elsevier, vol. 70(1), pages 29-41, January.
    15. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    16. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    17. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    18. Perron, Pierre, 1990. "Testing for a Unit Root in a Time Series with a Changing Mean," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 153-162, April.
    19. Leipus, Remigijus & Viano, Marie-Claude, 2003. "Long memory and stochastic trend," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 177-190, January.
    20. Vadim Teverovsky & Murad Taqqu, 1997. "Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(3), pages 279-304, May.
    21. Iliyan GEORGIEV, 2002. "Functional Weak Limit Theory for Rare Outlying Events," Economics Working Papers ECO2002/22, European University Institute.
    22. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    23. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McMillan, David G., 2009. "The confusing time-series behaviour of real exchange rates: Are asymmetries important?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 692-711, October.
    2. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    3. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    4. Umar Muhammad Gummi & Yang Rong & Utiya Bello & Abdulhamid Sillah Umar & Asiya Mu'azu, 2021. "On the Analysis of Food and Oil Markets in Nigeria: What Prices Tell Us from Asymmetric and Partial Structural Change Modeling?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 52-64.
    5. McMillan, David G. & Ruiz, Isabel, 2009. "Volatility persistence, long memory and time-varying unconditional mean: Evidence from 10 equity indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(2), pages 578-595, May.
    6. David G. McMillan, 2010. "Level‐shifts and non‐linearity in US financial ratios," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 9(2), pages 189-207, May.
    7. Tan, Zhengxun & Xiao, Binuo & Huang, Yilong & Zhou, Li, 2021. "Value at risk and return in Chinese and the US stock markets: Double long memory and fractional cointegration," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary Biglaiser & Ching-to Albert Ma, 2007. "Moonlighting: public service and private practice," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1113-1133, December.
    2. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    3. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    4. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    5. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    6. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    7. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    8. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.
    9. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    10. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    11. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    12. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    13. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    14. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    15. Pierre Perron & Wendong Shi, 2020. "Temporal Aggregation and Long Memory for Asset Price Volatility," JRFM, MDPI, vol. 13(8), pages 1-18, August.
    16. Kyongwook Choi & Eric Zivot, 2003. "Long Memory and Structural Changes in the Forward Discount: An Empirical Investigation," EERI Research Paper Series EERI_RP_2003_02, Economics and Econometrics Research Institute (EERI), Brussels.
    17. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    18. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    19. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    20. Gabriel Rodríguez & Roxana Tramontana Tocto, 2015. "Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 52(2), pages 185-211, November.

    More about this item

    Keywords

    structural change; jumps; long memory processes; fractional integration; Poisson process; frequency domain estimates.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2006-016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.