IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0611.html
   My bibliography  Save this paper

Macroeconomic tail events with non-linear Bayesian VARs

Author

Listed:
  • Chiu, Ching-Wai (Jeremy)

    (Bank of England)

  • Hacioglu Hoke, Sinem

    (Bank of England)

Abstract

Motivated by the desire to probe macroeconomic tail events and to capture non-linear economic dynamics, we estimate two types of regime switching models: threshold VAR and Markov switching VAR. For each of the models, we estimate regimes which carry the interpretation of recessionary/normal and financially stressful/stable periods. Using the recursiveness assumption and conditional on shocks of one standard deviation, we show that (i) financial shocks hitting during times of recessions create disproportionately more severe contractions in output; (ii) output growth shocks hitting in financially stressful times result in disproportionately further financial stress; (iii) monetary policy shocks hitting in recessionary times create more severe contractions in output. We also demonstrate the power of a feedback loop between real and financial sectors when extremely large shocks hit the economy in normal/financially stable periods. Afterwards, we perform out-of-sample forecasting exercises, and find that the threshold VAR model has the potential to predict tail events in conditional forecasting. Overall, our findings provide strong evidence of nonlinearities and shock amplification mechanisms in the UK data, as well as empirical support to the theoretical findings of Brunnermeier and Sannikov (2014).

Suggested Citation

  • Chiu, Ching-Wai (Jeremy) & Hacioglu Hoke, Sinem, 2016. "Macroeconomic tail events with non-linear Bayesian VARs," Bank of England working papers 611, Bank of England.
  • Handle: RePEc:boe:boeewp:0611
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2016/macroeconomic-tail-events-with-non-linear-bayesian-vars.pdf?la=en&hash=99143596CAAFA9AF57B5ED1F248CB7226008AB20
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    2. Covas, Francisco B. & Rump, Ben & Zakrajšek, Egon, 2014. "Stress-testing US bank holding companies: A dynamic panel quantile regression approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 691-713.
    3. Ana Beatriz Galvão & Michael T. Owyang, 2018. "Financial Stress Regimes and the Macroeconomy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1479-1505, October.
    4. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    5. Kiyotaki, Nobuhiro & Moore, John, 1997. "Credit Cycles," Journal of Political Economy, University of Chicago Press, vol. 105(2), pages 211-248, April.
    6. Thomas Philippon, 2009. "The Bond Market's q," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(3), pages 1011-1056.
    7. Andrew Blake & Haroon Mumtaz, 2015. "Applied Bayesian Econometrics for central bankers," Handbooks, Centre for Central Banking Studies, Bank of England, number 36, April.
    8. Christophe Boucher & Bertrand Maillet, 2015. "La macroéconomie-en-risque," Revue économique, Presses de Sciences-Po, vol. 66(4), pages 769-782.
    9. Chang‐Jin Kim & James Morley & Jeremy Piger, 2005. "Nonlinearity and the permanent effects of recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 291-309.
    10. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    11. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    12. Mishkin, Frederic S., 2010. "Monetary policy flexibility, risk management, and financial disruptions," Journal of Asian Economics, Elsevier, vol. 21(3), pages 242-246, June.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    15. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    16. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    17. António Afonso & Jaromír Baxa & Michal Slavík, 2018. "Fiscal developments and financial stress: a threshold VAR analysis," Empirical Economics, Springer, vol. 54(2), pages 395-423, March.
    18. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    19. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    20. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    21. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    22. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    23. Efrem Castelnuovo & Paolo Surico, 2010. "Monetary Policy, Inflation Expectations and The Price Puzzle," Economic Journal, Royal Economic Society, vol. 120(549), pages 1262-1283, December.
    24. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    25. Baum, Anja & Koester, Gerrit B., 2011. "The impact of fiscal policy on economic activity over the business cycle - evidence from a threshold VAR analysis," Discussion Paper Series 1: Economic Studies 2011,03, Deutsche Bundesbank.
    26. Franta, Michal, 2017. "Rare shocks vs. non-linearities: What drives extreme events in the economy? Some empirical evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 136-157.
    27. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    28. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    29. Cathy W. S. Chen & Jack C. Lee, 1995. "Bayesian Inference Of Threshold Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(5), pages 483-492, September.
    30. Smets, Frank & Collard, Fabrice & Boissay, Frédéric, 2013. "Booms and systemic banking crises," Working Paper Series 1514, European Central Bank.
    31. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    32. Nathan S. Balke, 2000. "Credit and Economic Activity: Credit Regimes and Nonlinear Propagation of Shocks," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 344-349, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harun, Cicilia A. & Taruna, Aditya Anta & Ramdani,, 2021. "Capturing the nonlinear impact in distress state: Enhancing scenario design of stress test," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 265-288.
    2. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    3. Knotek, Edward S. & Zaman, Saeed, 2021. "Asymmetric responses of consumer spending to energy prices: A threshold VAR approach," Energy Economics, Elsevier, vol. 95(C).
    4. Zulquar Nain & Bandi Kamaiah, 2020. "Uncertainty and Effectiveness of Monetary Policy: A Bayesian Markov Switching-VAR Analysis," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 9(special i), pages 237-265.
    5. Salzmann, Leonard, 2019. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," EconStor Preprints 206691, ZBW - Leibniz Information Centre for Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    3. Kanazawa, Nobuyuki, 2020. "Radial basis functions neural networks for nonlinear time series analysis and time-varying effects of supply shocks," Journal of Macroeconomics, Elsevier, vol. 64(C).
    4. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    5. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    6. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    7. Sebastian Ankargren & Mårten Bjellerup & Hovick Shahnazarian, 2017. "The importance of the financial system for the real economy," Empirical Economics, Springer, vol. 53(4), pages 1553-1586, December.
    8. Laura Liu & Christian Matthes & Katerina Petrova, 2022. "Monetary Policy Across Space and Time," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 37-64, Emerald Group Publishing Limited.
    9. Andrea Silvestrini & Andrea Zaghini, 2015. "Financial shocks and the real economy in a nonlinear world: a survey of the theoretical and empirical literature," Questioni di Economia e Finanza (Occasional Papers) 255, Bank of Italy, Economic Research and International Relations Area.
    10. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    11. Giacomo Rella, 2021. "The Fed, housing and household debt over time," Department of Economics University of Siena 850, Department of Economics, University of Siena.
    12. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
    13. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "The Transmission of Monetary Policy Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(3), pages 74-107, July.
    14. Florian Huber & Manfred M. Fischer, 2018. "A Markov Switching Factor‐Augmented VAR Model for Analyzing US Business Cycles and Monetary Policy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 575-604, June.
    15. Erdenebat Bataa & Andrew Vivian & Mark Wohar, 2019. "Changes in the relationship between short‐term interest rate, inflation and growth: evidence from the UK, 1820–2014," Bulletin of Economic Research, Wiley Blackwell, vol. 71(4), pages 616-640, October.
    16. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
    17. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    18. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    19. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    20. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    21. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.

    More about this item

    Keywords

    Macroeconomic tail events; nonlinear VARs; generalised impulse response functions; density forecasts;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.