IDEAS home Printed from https://ideas.repec.org/p/boc/usug16/01.html
   My bibliography  Save this paper

The role of Somers's D in propensity modeling

Author

Listed:
  • Roger Newson

    (Department of Primary Care and Public Health, Imperial College London)

Abstract

The Rubin method of confounder adjustment, in its 21st-century version, is a two-phase method for using observational data to estimate a causal treatment effect on an outcome variable. It involves first finding a propensity model in the joint distribution of a treatment variable and its confounders (the design phase), and then estimating the treatment effect from the conditional distribution of the outcome, given the treatments and confounders (the analysis phase). In the design phase, we want to limit the level of spurious treatment effect that might be caused by any residual imbalance between treatment and confounders that may remain, after adjusting for the propensity score by propensity matching and weighting and/or stratification. A good measure of this is Somers's D(W|X), where W is a confounder or a propensity score and X is the treatment variable. The SSC package somersd calculates Somers's D for a wide range of sampling schemes, allowing matching and weighting and restriction to comparisons within strata. Somers's D has the feature that if Y is an outcome, then a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X), implying that D(W|X) can be used to set an upper bound to the size of a spurious treatment effect on an outcome. For a binary treatment variable X, D(W|X) gives an upper bound to the size of a difference between the proportions, in the two treatment groups, that can be caused for a binary outcome. If D(W|X) is less than 0.5, then it can be doubled to give an upper bound to the size of a difference between the means, in the two treatment groups, that can be caused for an equal-variance normal outcome, expressed in units of the common standard deviation for the two treatment groups. We illustrate this method using a familiar dataset, with examples using propensity matching, weighting, and stratification. We use the SSC package haif in the design phase to check for variance inflation caused by propensity adjustment and use the SSC package scenttest (an addition to the punaf family) to estimate the treatment effect in the analysis phase.

Suggested Citation

  • Roger Newson, 2016. "The role of Somers's D in propensity modeling," United Kingdom Stata Users' Group Meetings 2016 01, Stata Users Group.
  • Handle: RePEc:boc:usug16:01
    as

    Download full text from publisher

    File URL: http://repec.org/usug2016/newson_uksug16.pdf
    File Function: presentation materials
    Download Restriction: no

    File URL: http://repec.org/usug2016/newson_examples1.do
    File Function: sample do-file
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roger Newson, 2009. "Homoskedastic adjustment inflation factors in model selection," United Kingdom Stata Users' Group Meetings 2009 15, Stata Users Group.
    2. Roger Newson, 2006. "Confidence intervals for rank statistics: Somers' D and extensions," Stata Journal, StataCorp LP, vol. 6(3), pages 309-334, September.
    3. Alberto Abadie & David Drukker & Jane Leber Herr & Guido W. Imbens, 2004. "Implementing matching estimators for average treatment effects in Stata," Stata Journal, StataCorp LP, vol. 4(3), pages 290-311, September.
    4. Roger Newson, 2006. "Confidence intervals for rank statistics: Percentile slopes, differences, and ratios," Stata Journal, StataCorp LP, vol. 6(4), pages 497-520, December.
    5. Roger Newson, 2015. "Somers' D: A common currency for associations," United Kingdom Stata Users' Group Meetings 2015 01, Stata Users Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger Newson, 2017. "Ridit splines with applications to propensity weighting," United Kingdom Stata Users' Group Meetings 2017 01, Stata Users Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gala, Kaushik & Schwab, Andreas & Mueller, Brandon A., 2024. "Star entrepreneurs on digital platforms: Heavy-tailed performance distributions and their generative mechanisms," Journal of Business Venturing, Elsevier, vol. 39(1).
    2. Ichiro Kunitsugu & Masayuki Okuda & Shinichi Sugiyama & Norikazu Yoshitake & Yukio Tanizawa & Satoshi Sasaki & Tatsuya Hobara, 2012. "Meat intake frequency and anemia in Japanese children and adolescents," Nursing & Health Sciences, John Wiley & Sons, vol. 14(2), pages 197-203, June.
    3. Orth, Walter, 2012. "The predictive accuracy of credit ratings: Measurement and statistical inference," International Journal of Forecasting, Elsevier, vol. 28(1), pages 288-296.
    4. Marszalec, Daniel, 2018. "Fear not the simplicity - An experimental analysis of auctions for complements," Journal of Economic Behavior & Organization, Elsevier, vol. 152(C), pages 81-97.
    5. Jeannette Brosig‐Koch & Heike Hennig‐Schmidt & Nadja Kairies‐Schwarz & Daniel Wiesen, 2017. "The Effects of Introducing Mixed Payment Systems for Physicians: Experimental Evidence," Health Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 243-262, February.
    6. Navarro, Noemí & Veszteg, Róbert F., 2020. "On the empirical validity of axioms in unstructured bargaining," Games and Economic Behavior, Elsevier, vol. 121(C), pages 117-145.
    7. Roger Newson, 2019. "Bland–Altman plots, rank parameters, and calibration ridit splines," London Stata Conference 2019 01, Stata Users Group.
    8. Dirk Tasche, 2009. "Estimating discriminatory power and PD curves when the number of defaults is small," Papers 0905.3928, arXiv.org, revised Mar 2010.
    9. Roger Newson, 2014. "Easy-to-use packages for estimating rank and spline parameters," United Kingdom Stata Users' Group Meetings 2014 01, Stata Users Group.
    10. Hanna Karolina Szymborska, 2018. "Household wealth structures and position in the income distribution – econometric analysis for the USA, 1989-2013," Working Papers PKWP1806, Post Keynesian Economics Society (PKES).
    11. Ahdesmäki Miika & Lancashire Lee & Proutski Vitali & Wilson Claire & Davison Timothy S. & Harkin D. Paul & Kennedy Richard D., 2013. "Model selection for prognostic time-to-event gene signature discovery with applications in early breast cancer data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 619-635, October.
    12. Roger Newson, 2015. "Somers' D: A common currency for associations," United Kingdom Stata Users' Group Meetings 2015 01, Stata Users Group.
    13. Löschel, Andreas & Sturm, Bodo & Uehleke, Reinhard, 2017. "Revealed preferences for voluntary climate change mitigation when the purely individual perspective is relaxed – evidence from a framed field experiment," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 67(C), pages 149-160.
    14. Alena MINÃ ROVÃ, 2012. "Evaluation Of Dependence Of Occurrence Of Risk Events In Logistics On Risk Factors By Means Of Somers' D Coefficient," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 7(1(19)/ Sp), pages 73-86.
    15. Stephen F Weng & Jenna Reps & Joe Kai & Jonathan M Garibaldi & Nadeem Qureshi, 2017. "Can machine-learning improve cardiovascular risk prediction using routine clinical data?," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    16. Cogneau, Philippe & Hübner, Georges, 2015. "The prediction of fund failure through performance diagnostics," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 224-241.
    17. Diego Rios-Zertuche & Jose Cuchilla & Paola Zúñiga-Brenes & Bernardo Hernández & Patricia Jara & Ali H. Mokdad & Emma Iriarte, 2017. "Alcohol abuse and other factors associated with risky sexual behaviors among adolescent students from the poorest areas in Costa Rica," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 62(2), pages 271-282, March.
    18. Marco Lollobrigida & Livia Ottolenghi & Denise Corridore & Gianluca Pingitore & Cecilia Damiano & Giorgio Serafini & Alberto De Biase, 2022. "Student Evaluation of Distance Learning during the COVID-19 Pandemic: A Cross-Sectional Survey on Medical, Dental, and Healthcare Students at Sapienza University of Rome," IJERPH, MDPI, vol. 19(16), pages 1-10, August.
    19. Daniel Marszalec, 2016. "Auctions For Complements –An Experimental Analysis," CIRJE F-Series CIRJE-F-1018, CIRJE, Faculty of Economics, University of Tokyo.
    20. John A Maluccio & Tia Palermo & Suneetha Kadiyala & Rahul Rawat, 2015. "Improving Health-Related Quality of Life among People Living with HIV: Results from an Impact Evaluation of a Food Assistance Program in Uganda," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-17, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug16:01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.