IDEAS home Printed from https://ideas.repec.org/p/boc/dcon09/12.html
   My bibliography  Save this paper

New multivariate time-series estimators in Stata

Author

Listed:
  • David M. Drukker

    (StataCorp)

Abstract

Stata 11 has new commands sspace and dvech for estimating the parameters of space-space models and diagonal-vech multivariate GARCH models, respectively. In this presentation, I provide an introduction to space-space models, diagonal-vech multivariate GARCH models, the implemented estimators, and the new Stata commands.

Suggested Citation

  • David M. Drukker, 2009. "New multivariate time-series estimators in Stata," DC09 Stata Conference 12, Stata Users Group.
  • Handle: RePEc:boc:dcon09:12
    as

    Download full text from publisher

    File URL: http://repec.org/dcon09/dc09_drukker_mvts.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    2. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    3. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    4. Olivier Jean Blanchard & Stanley Fischer (ed.), 1991. "NBER Macroeconomics Annual 1991," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262521652, April.
    5. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaichao Du & Pei Pei, 2020. "Backtesting portfolio value‐at‐risk with estimated portfolio weights," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 605-619, September.
    2. Massimo PERI & Daniela VANDONE & Lucia BALDI, 2014. "Water, Food, Energy: Searching for the Economic Nexus," Departmental Working Papers 2014-03, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    3. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    4. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    5. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    6. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    7. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    8. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    9. Mensi, Walid & Nekhili, Ramzi & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Oil and precious metals: Volatility transmission, hedging, and safe haven analysis from the Asian crisis to the COVID-19 crisis," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 73-96.
    10. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    11. Jensen, Mark J. & Maheu, John M., 2013. "Bayesian semiparametric multivariate GARCH modeling," Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
    12. Koenig, P., 2011. "Modelling Correlation in Carbon and Energy Markets," Cambridge Working Papers in Economics 1123, Faculty of Economics, University of Cambridge.
    13. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    14. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Conrad, Christian & Karanasos, Menelaos, 2010. "Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model," Econometric Theory, Cambridge University Press, vol. 26(3), pages 838-862, June.
    16. Peri, Massimo & Vandone, Daniela & Baldi, Lucia, 2014. "Worldwide Evidences in the Relationships between Agriculture, Energy and Water Sectors," 2014 International European Forum, February 17-21, 2014, Innsbruck-Igls, Austria 199346, International European Forum on System Dynamics and Innovation in Food Networks.
    17. Noureddine Benlagha, 2014. "Volatility Linkage of Nominal and Index-linked Bond Returns: A Multivariate BEKK-GARCH Approach," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 49-60, November.
    18. Avarucci, Marco & Beutner, Eric & Zaffaroni, Paolo, 2013. "On Moment Conditions For Quasi-Maximum Likelihood Estimation Of Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 29(3), pages 545-566, June.
    19. Pei Pei, 2010. "Backtesting Portfolio Value-at-Risk with Estimated Portfolio Weights," CAEPR Working Papers 2010-010, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    20. Gürtler, Marc & Rauh, Ronald, 2013. "Empirical studies in a multivariate non-stationary, nonparametric regression model for financial returns," Working Papers IF43V1, Technische Universität Braunschweig, Institute of Finance.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:dcon09:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.