IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/48-13.html
   My bibliography  Save this paper

On the identification of structural linear functionals

Author

Listed:
  • Juan Carlos Escanciano
  • Wei Li

Abstract

This paper asks which aspects of a structural Nonparametric Instrumental Variables Regression (NPIVR) can be identified well and which ones cannot. It contributes to answering this question by characterising the identified set of linear continuous functionals of the NPIVR under norm constraints. Each element of the identified set of NPIVR can be written as the sum of a common 'identifiable component' and an idiosyncratic 'unidentifiable component'. The identified set for any continuous linear functional is shown to be a closed interval, whose midpoint is the functional applied to the 'identifiable component'. The formula for the length of the identified set extends the popular omitted variables formula of classical linear regression. Some examples illustrate the wide applicability and utility of our identification result, including bounds and a new identification condition for point-evaluation functionals. The main ideas are illustrated with an empirical application of the effect of children on labour market outcomes.

Suggested Citation

  • Juan Carlos Escanciano & Wei Li, 2013. "On the identification of structural linear functionals," CeMMAP working papers 48/13, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:48/13
    DOI: 10.1920/wp.cem.2013.4813
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP4813.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2013.4813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    2. Severini, Thomas A. & Tripathi, Gautam, 2012. "Efficiency bounds for estimating linear functionals of nonparametric regression models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 491-498.
    3. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(3), pages 472-496, June.
    4. Bronars, Stephen G & Grogger, Jeff, 1994. "The Economic Consequences of Unwed Motherhood: Using Twin Births as a Natural Experiment," American Economic Review, American Economic Association, vol. 84(5), pages 1141-1156, December.
    5. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    6. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1265-1305, December.
    7. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sebastien, 2011. "Identification and estimation by penalization in Nonparametric Instrumental Regression," LIDAM Reprints ISBA 2011046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Santos, Andres, 2011. "Instrumental variable methods for recovering continuous linear functionals," Journal of Econometrics, Elsevier, vol. 161(2), pages 129-146, April.
    9. Angrist, Joshua D & Evans, William N, 1998. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," American Economic Review, American Economic Association, vol. 88(3), pages 450-477, June.
    10. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    11. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    12. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    13. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    14. Patrick Gagliardini & Olivier Scaillet, 2012. "Nonparametric Instrumental Variable Estimation of Structural Quantile Effects," Econometrica, Econometric Society, vol. 80(4), pages 1533-1562, July.
    15. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    16. Severini, Thomas A. & Tripathi, Gautam, 2006. "Some Identification Issues In Nonparametric Linear Models With Endogenous Regressors," Econometric Theory, Cambridge University Press, vol. 22(2), pages 258-278, April.
    17. Bryan W. Brown & Whitney K. Newey, 1998. "Efficient Semiparametric Estimation of Expectations," Econometrica, Econometric Society, vol. 66(2), pages 453-464, March.
    18. David Card, 1995. "The Wage Curve: A Review," Working Papers 722, Princeton University, Department of Economics, Industrial Relations Section..
    19. Whitney K. Newey, 2013. "Nonparametric Instrumental Variables Estimation," American Economic Review, American Economic Association, vol. 103(3), pages 550-556, May.
    20. David Card, 1995. "The Wage Curve: A Review," Journal of Economic Literature, American Economic Association, vol. 33(2), pages 285-299, June.
    21. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    22. Andres Santos, 2012. "Inference in Nonparametric Instrumental Variables With Partial Identification," Econometrica, Econometric Society, vol. 80(1), pages 213-275, January.
    23. Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 2000. "The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(3), pages 499-527.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escanciano, Juan Carlos & Li, Wei, 2021. "Optimal Linear Instrumental Variables Approximations," Journal of Econometrics, Elsevier, vol. 221(1), pages 223-246.
    2. Carolina Caetano & Juan Carlos Escaniano, 2015. "Identifying Multiple Marginal Effects with a Single Binary Instrument or by Regression Discontinuity," CAEPR Working Papers 2015-009, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    3. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2023. "Source Condition Double Robust Inference on Functionals of Inverse Problems," Papers 2307.13793, arXiv.org.
    4. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
    5. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    6. Chen, Qihui, 2021. "Robust and optimal estimation for partially linear instrumental variables models with partial identification," Journal of Econometrics, Elsevier, vol. 221(2), pages 368-380.
    7. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    8. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2023. "Minimax Instrumental Variable Regression and $L_2$ Convergence Guarantees without Identification or Closedness," Papers 2302.05404, arXiv.org.
    9. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    10. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    11. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    12. Andrews, Donald W.K., 2017. "Examples of L2-complete and boundedly-complete distributions," Journal of Econometrics, Elsevier, vol. 199(2), pages 213-220.
    13. Centorrino Samuele & Feve Frederique & Florens Jean-Pierre, 2017. "Additive Nonparametric Instrumental Regressions: A Guide to Implementation," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-25, January.
    14. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    15. Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," CeMMAP working papers 38/14, Institute for Fiscal Studies.
    16. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    17. Babii, Andrii, 2020. "Honest Confidence Sets In Nonparametric Iv Regression And Other Ill-Posed Models," Econometric Theory, Cambridge University Press, vol. 36(4), pages 658-706, August.
    18. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    19. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    20. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2023. "One-step smoothing splines instrumental regression," Papers 2307.14867, arXiv.org, revised Dec 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:48/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.