IDEAS home Printed from https://ideas.repec.org/p/bir/birmec/13-14.html
   My bibliography  Save this paper

An Adaptive Learning Model in Coordination Games

Author

Listed:
  • Naoki Funai

Abstract

In this paper, we provide a theoretical prediction of the way in which adaptive players behave in the long run in games with strict Nash equilibria. In the model, each player picks the action which has the highest assessment, which is a weighted average of past payoffs. Each player updates his assessment of the chosen action in an adaptive manner. Almost sure convergence to a Nash equilibrium is shown under one of the following conditions: (i) that, at any non-Nash equilbrium action profile, there exists a player who can find another action which gives always better payoffs than his current payoff, (ii) that all non-Nash equilibrium action profiles give the same payoff. We show almost sure convergence to a Nash equilibrium in the following games: pure coordination games; the battle of the sexes games; the stag hunt game; and the first order static game. In the game of chicken and market entry games, players may end up playing a maximum action profile.

Suggested Citation

  • Naoki Funai, 2013. "An Adaptive Learning Model in Coordination Games," Discussion Papers 13-14, Department of Economics, University of Birmingham.
  • Handle: RePEc:bir:birmec:13-14
    as

    Download full text from publisher

    File URL: https://repec.cal.bham.ac.uk/pdf/13-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Chen, Yan & Khoroshilov, Yuri, 2003. "Learning under limited information," Games and Economic Behavior, Elsevier, vol. 44(1), pages 1-25, July.
    4. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    5. Van Huyck, John B & Battalio, Raymond C & Beil, Richard O, 1990. "Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure," American Economic Review, American Economic Association, vol. 80(1), pages 234-248, March.
    6. Cooper, Russell, et al, 1990. "Selection Criteria in Coordination Games: Some Experimental Results," American Economic Review, American Economic Association, vol. 80(1), pages 218-233, March.
    7. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    8. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    9. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    10. Sarin, Rajiv, 1999. "Simple play in the Prisoner's Dilemma," Journal of Economic Behavior & Organization, Elsevier, vol. 40(1), pages 105-113, September.
    11. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    12. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
    13. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naoki Funai, 2013. "An Adaptive Learning Model in Coordination Games," Games, MDPI, vol. 4(4), pages 1-22, November.
    2. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    3. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    4. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    5. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    6. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    7. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    8. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    9. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    10. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    11. Jacob K. Goeree & Charles A. Holt, 2001. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," American Economic Review, American Economic Association, vol. 91(5), pages 1402-1422, December.
    12. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    13. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    14. Maoliang Ye & Jie Zheng & Plamen Nikolov & Sam Asher, 2020. "One Step at a Time: Does Gradualism Build Coordination?," Management Science, INFORMS, vol. 66(1), pages 113-129, January.
    15. Yan Chen & Robert Gazzale, 2004. "When Does Learning in Games Generate Convergence to Nash Equilibria? The Role of Supermodularity in an Experimental Setting," American Economic Review, American Economic Association, vol. 94(5), pages 1505-1535, December.
    16. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    17. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    18. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.
    19. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    20. Semeshenko, Viktoriya & Gordon, Mirta B. & Nadal, Jean-Pierre, 2008. "Collective states in social systems with interacting learning agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4903-4916.

    More about this item

    Keywords

    Adaptive Learning; Coordination Games;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bir:birmec:13-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oleksandr Talavera (email available below). General contact details of provider: https://edirc.repec.org/data/debhauk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.