IDEAS home Printed from https://ideas.repec.org/p/bir/birmec/10-09.html
   My bibliography  Save this paper

On the Asymptotic Properties of a Feasible Estimator of the Continuous Time Long Memory Parameter

Author

Listed:
  • Joanne S. Ercolani

Abstract

This paper considers a fractional noise model in continuous time and examines the asymptotic properties of a feasible frequency domain maximum likelihood estimator of the long memory parameter. The feasible estimator is one that maximises an approximation to the likelihood function (the approximation arises from the fact that the spectral density function involves the finite truncatin of an infinite summation). It is of interest therefore to explore the conditions required of this approximation to ensure the consistency and asymptotic normality of this estimator. It is shown that the truncation parameter has to be a function of the sample size and that the optimal rate is different for stocks and flows and is a function of the long memory parameter itself. The results of a simulation exercise are provided to assess the small sample properties of the estimator.

Suggested Citation

  • Joanne S. Ercolani, 2010. "On the Asymptotic Properties of a Feasible Estimator of the Continuous Time Long Memory Parameter," Discussion Papers 10-09, Department of Economics, University of Birmingham.
  • Handle: RePEc:bir:birmec:10-09
    as

    Download full text from publisher

    File URL: https://repec.cal.bham.ac.uk/pdf/10-09.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chambers, Marcus J., 1996. "The Estimation of Continuous Parameter Long-Memory Time Series Models," Econometric Theory, Cambridge University Press, vol. 12(2), pages 374-390, June.
    2. Ercolani, Joanne S. & Chambers, Marcus J., 2006. "Estimation Of Differential-Difference Equation Systems With Unknown Lag Parameters," Econometric Theory, Cambridge University Press, vol. 22(3), pages 483-498, June.
    3. Chambers, Marcus J. & McGarry, Joanne S., 2002. "Modeling Cyclical Behavior With Differential-Difference Equations In An Unobserved Components Framework," Econometric Theory, Cambridge University Press, vol. 18(2), pages 387-419, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanne S. Ercolani, 2014. "Cyclical Activity and Gestation Lags in Investment," Manchester School, University of Manchester, vol. 82(5), pages 620-630, September.
    2. Joanne S. Ercolani, 2007. "Cyclical Trends in Continuous Time Models," Discussion Papers 07-13, Department of Economics, University of Birmingham.
    3. Henghsiu Tsai & K. S. Chan, 2005. "Temporal Aggregation of Stationary And Nonstationary Discrete‐Time Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 613-624, July.
    4. Comte, F., 1998. "Discrete and continuous time cointegration," Journal of Econometrics, Elsevier, vol. 88(2), pages 207-226, November.
    5. Joanne S. McGarry & Marcus J. Chambers, 2004. "Party formation and coalitional bargaining in a model of proportional representation," Discussion Papers 04-07, Department of Economics, University of Birmingham.
    6. Souza, Leonardo R. & Smith, Jeremy, 2002. "Bias in the memory parameter for different sampling rates," International Journal of Forecasting, Elsevier, vol. 18(2), pages 299-313.
    7. Mohamedou Ould Haye & Anne Philippe & Caroline Robet, 2024. "Inference for continuous-time long memory randomly sampled processes," Statistical Papers, Springer, vol. 65(5), pages 3111-3134, July.
    8. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    9. Tucker S. McElroy & Thomas M. Trimbur, 2007. "Continuous time extraction of a nonstationary signal with illustrations in continuous low-pass and band-pass filtering," Finance and Economics Discussion Series 2007-68, Board of Governors of the Federal Reserve System (U.S.).
    10. Theodore Simos, 2008. "The exact discrete model of a system of linear stochastic differential equations driven by fractional noise," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1019-1031, November.
    11. Eliana González & Luis F. Melo & Luis E. Rojas & Brayan Rojas, 2011. "Estimations of the Natural Rate of Interest in Colombia," Money Affairs, CEMLA, vol. 0(1), pages 33-75, January-J.
    12. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    13. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    14. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    15. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    16. Wymer Clifford R., 2012. "Continuous-Tme Econometrics of Structural Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(2), pages 1-28, April.
    17. Leonenko, Nikolai N. & Sharapov, Michail M. & El-Bassiouny, Ahmed H., 2000. "On the exactness of normal approximation of LSE of regression coefficient of long-memory random fields," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 121-130, June.
    18. repec:hal:journl:peer-00815563 is not listed on IDEAS
    19. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.

    More about this item

    Keywords

    Continuous time models; long memory processes;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bir:birmec:10-09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oleksandr Talavera (email available below). General contact details of provider: https://edirc.repec.org/data/debhauk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.