IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/605.html
   My bibliography  Save this paper

Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria

Author

Listed:
  • Dianetti, Jodi

    (Center for Mathematical Economics, Bielefeld University)

  • Ferrari, Giorgio

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We consider a class of N-player stochastic games of multi-dimensional singular control, in which each player faces a minimization problem of monotone-follower type with submodular costs. We call these games monotone-follower games. In a not necessarily Markovian setting, we establish the existence of Nash equilibria. Moreover, we introduce a sequence of approximating games by restricting, for each n ∈ ℕ, the players' admissible strategies to the set of Lipschitz processes with Lipschitz constant bounded by n. We prove that, for each n ∈ ℕ, there exists a Nash equilibrium of the approximating game and that the sequence of Nash equilibria converges, in the Meyer-Zheng sense, to a weak (distributional) Nash equilibrium of the original game of singular control. As a byproduct, such a convergence also provides approximation results of the equilibrium values across the two classes of games. We finally show how our results can be employed to prove existence of open-loop Nash equilibria in an N-player stochastic differential game with singular controls, and we propose an algorithm to determine a Nash equilibrium for the monotone-follower game.

Suggested Citation

  • Dianetti, Jodi & Ferrari, Giorgio, 2019. "Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria," Center for Mathematical Economics Working Papers 605, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:605
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2932994/2932998
    File Function: First Version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Michael Harrison & Michael I. Taksar, 1983. "Instantaneous Control of Brownian Motion," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 439-453, August.
    2. Boetius, Frederik & Kohlmann, Michael, 1998. "Connections between optimal stopping and singular stochastic control," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 253-281, September.
    3. Frank Riedel & Xia Su, 2011. "On irreversible investment," Finance and Stochastics, Springer, vol. 15(4), pages 607-633, December.
    4. H. Dharma Kwon & Hongzhong Zhang, 2015. "Game of Singular Stochastic Control and Strategic Exit," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 869-887, October.
    5. X. Guo & P. Kaminsky & P. Tomecek & M. Yuen, 2011. "Optimal spot market inventory strategies in the presence of cost and price risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 109-137, February.
    6. Jan-Henrik Steg, 2012. "Irreversible investment in oligopoly," Finance and Stochastics, Springer, vol. 16(2), pages 207-224, April.
    7. Fu, Guanxing & Horst, Ulrich, 2017. "Mean Field Games with Singular Controls," Rationality and Competition Discussion Paper Series 22, CRC TRR 190 Rationality and Competition.
    8. Abel Cadenillas & Ricardo Huamán-Aguilar, 2016. "Explicit formula for the optimal government debt ceiling," Annals of Operations Research, Springer, vol. 247(2), pages 415-449, December.
    9. Giorgio Ferrari & Frank Riedel & Jan-Henrik Steg, 2013. "Continuous-Time Public Good Contribution under Uncertainty: A Stochastic Control Approach," Papers 1307.2849, arXiv.org, revised Oct 2015.
    10. Maria B. Chiarolla & Giorgio Ferrari & Frank Riedel, 2012. "Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources," Papers 1203.3757, arXiv.org, revised Aug 2013.
    11. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    12. Maria B. Chiarolla & Giorgio Ferrari, 2011. "Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem," Papers 1108.4886, arXiv.org, revised Dec 2013.
    13. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    14. Løkka, Arne & Zervos, Mihail, 2008. "Optimal dividend and issuance of equity policies in the presence of proportional costs," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 954-961, June.
    15. Xavier Vives, 2001. "Oligopoly Pricing: Old Ideas and New Tools," MIT Press Books, The MIT Press, edition 1, volume 1, number 026272040x, April.
    16. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
    17. Yan Wang & Lei Wang & Kok Lay Teo, 2018. "Necessary and Sufficient Optimality Conditions for Regular–Singular Stochastic Differential Games with Asymmetric Information," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 501-532, November.
    18. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2013. "Markov Stationary Equilibria in Stochastic Supermodular Games with Imperfect Private and Public Information," Dynamic Games and Applications, Springer, vol. 3(2), pages 187-206, June.
    19. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2014. "A constructive study of Markov equilibria in stochastic games with strategic complementarities," Journal of Economic Theory, Elsevier, vol. 150(C), pages 815-840.
    20. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    21. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    22. Xin Guo & Wenpin Tang & Renyuan Xu, 2018. "A class of stochastic games and moving free boundary problems," Papers 1809.03459, arXiv.org, revised Oct 2021.
    23. Kerry Back & Dirk Paulsen, 2009. "Open-Loop Equilibria and Perfect Competition in Option Exercise Games," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4531-4552, November.
    24. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    25. Milgrom, Paul & Roberts, John, 1990. "The Economics of Modern Manufacturing: Technology, Strategy, and Organization," American Economic Review, American Economic Association, vol. 80(3), pages 511-528, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Haoyang & Guo, Xin, 2022. "MFGs for partially reversible investment," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 995-1014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dianetti, Jodi, 2023. "Linear-Quadratic-Singular Stochastic Differential Games and Applications," Center for Mathematical Economics Working Papers 678, Center for Mathematical Economics, Bielefeld University.
    2. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    3. Ferrari, Giorgio & Riedel, Frank & Steg, Jan-Henrik, 2016. "Continuous-Time Public Good Contribution under Uncertainty," Center for Mathematical Economics Working Papers 485, Center for Mathematical Economics, Bielefeld University.
    4. Chiarolla, Maria B. & Ferrari, Giorgio & Stabile, Gabriele, 2015. "Optimal dynamic procurement policies for a storable commodity with Lévy prices and convex holding costs," European Journal of Operational Research, Elsevier, vol. 247(3), pages 847-858.
    5. Giorgio Ferrari & Frank Riedel & Jan-Henrik Steg, 2013. "Continuous-Time Public Good Contribution under Uncertainty: A Stochastic Control Approach," Papers 1307.2849, arXiv.org, revised Oct 2015.
    6. Ren'e Aid & Matteo Basei & Giorgio Ferrari, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Papers 2305.00541, arXiv.org.
    7. Giorgio Ferrari, 2012. "On an integral equation for the free-boundary of stochastic, irreversible investment problems," Papers 1211.0412, arXiv.org, revised Jan 2015.
    8. Aïd, René & Basei, Matteo & Ferrari, Giorgio, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Center for Mathematical Economics Working Papers 679, Center for Mathematical Economics, Bielefeld University.
    9. Rama Cont & Xin Guo & Renyuan Xu, 2021. "Interbank lending with benchmark rates: Pareto optima for a class of singular control games," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1357-1393, October.
    10. Haoyang Cao & Jodi Dianetti & Giorgio Ferrari, 2021. "Stationary Discounted and Ergodic Mean Field Games of Singular Control," Papers 2105.07213, arXiv.org.
    11. Rama Cont & Xin Guo & Renyuan Xu, 2020. "Pareto Optima for a Class of Singular Control Games," Working Papers hal-03049246, HAL.
    12. Maria B. Chiarolla & Giorgio Ferrari & Frank Riedel, 2012. "Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources," Papers 1203.3757, arXiv.org, revised Aug 2013.
    13. Cao, Haoyang & Guo, Xin, 2022. "MFGs for partially reversible investment," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 995-1014.
    14. Cao, Haoyang & Dianetti, Jodi & Ferrari, Giorgio, 2021. "Stationary Discounted and Ergodic Mean Field Games of Singular Control," Center for Mathematical Economics Working Papers 650, Center for Mathematical Economics, Bielefeld University.
    15. Tiziano De Angelis & Salvatore Federico & Giorgio Ferrari, 2014. "Optimal Boundary Surface for Irreversible Investment with Stochastic Costs," Papers 1406.4297, arXiv.org, revised Jan 2017.
    16. Giorgio Ferrari & Hanwu Li & Frank Riedel, 2020. "A Knightian Irreversible Investment Problem," Papers 2003.14359, arXiv.org, revised Apr 2020.
    17. Rabah Amir & Filomena Garcia & Malgorzata Knauff, 2006. "Endogenous Heterogeneity in Strategic Models: Symmetry-breaking via Strategic Substitutes and Nonconcavities," Working Papers Department of Economics 2006/29, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    18. Dianetti, Jodi & Ferrari, Giorgio & Fischer, Markus & Nendel, Max, 2022. "A Unifying Framework for Submodular Mean Field Games," Center for Mathematical Economics Working Papers 661, Center for Mathematical Economics, Bielefeld University.
    19. Magnus Hoffmann & Grégoire Rota‐Graziosi, 2020. "Endogenous timing in the presence of non‐monotonicities," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 359-402, February.
    20. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, John Wiley & Sons, vol. 71(3), pages 636-660, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.