IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1409.0665.html
   My bibliography  Save this paper

Optimal Dynamic Procurement Policies for a Storable Commodity with L\'evy Prices and Convex Holding Costs

Author

Listed:
  • Maria B. Chiarolla
  • Giorgio Ferrari
  • Gabriele Stabile

Abstract

In this paper we study a continuous time stochastic inventory model for a commodity traded in the spot market and whose supply purchase is affected by price and demand uncertainty. A firm aims at meeting a random demand of the commodity at a random time by maximizing total expected profits. We model the firm's optimal procurement problem as a singular stochastic control problem in which controls are nondecreasing processes and represent the cumulative investment made by the firm in the spot market (a so-called stochastic "monotone follower problem"). We assume a general exponential L\'evy process for the commodity's spot price, rather than the commonly used geometric Brownian motion, and general convex holding costs. We obtain necessary and sufficient first order conditions for optimality and we provide the optimal procurement policy in terms of a "base inventory" process; that is, a minimal time-dependent desirable inventory level that the firm's manager must reach at any time. In particular, in the case of linear holding costs and exponentially distributed demand, we are also able to obtain the explicit analytic form of the optimal policy and a probabilistic representation of the optimal revenue. The paper is completed by some computer drawings of the optimal inventory when spot prices are given by a geometric Brownian motion and by an exponential jump-diffusion process. In the first case we also make a numerical comparison between the value function and the revenue associated to the classical static "newsvendor" strategy.

Suggested Citation

  • Maria B. Chiarolla & Giorgio Ferrari & Gabriele Stabile, 2014. "Optimal Dynamic Procurement Policies for a Storable Commodity with L\'evy Prices and Convex Holding Costs," Papers 1409.0665, arXiv.org, revised Jun 2015.
  • Handle: RePEc:arx:papers:1409.0665
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1409.0665
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frank Riedel & Xia Su, 2011. "On irreversible investment," Finance and Stochastics, Springer, vol. 15(4), pages 607-633, December.
    2. X. Guo & P. Kaminsky & P. Tomecek & M. Yuen, 2011. "Optimal spot market inventory strategies in the presence of cost and price risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 109-137, February.
    3. Jan-Henrik Steg, 2012. "Irreversible investment in oligopoly," Finance and Stochastics, Springer, vol. 16(2), pages 207-224, April.
    4. Fuqiang Zhang, 2010. "Procurement Mechanism Design in a Two-Echelon Inventory System with Price-Sensitive Demand," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 608-626, August.
    5. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    6. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    7. Hao Zhang & Mahesh Nagarajan & Greys Sošić, 2010. "Dynamic Supplier Contracts Under Asymmetric Inventory Information," Operations Research, INFORMS, vol. 58(5), pages 1380-1397, October.
    8. Giorgio Ferrari, 2012. "On an integral equation for the free-boundary of stochastic, irreversible investment problems," Papers 1211.0412, arXiv.org, revised Jan 2015.
    9. Maria B. Chiarolla & Giorgio Ferrari & Frank Riedel, 2012. "Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources," Papers 1203.3757, arXiv.org, revised Aug 2013.
    10. Maria B. Chiarolla & Giorgio Ferrari, 2011. "Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem," Papers 1108.4886, arXiv.org, revised Dec 2013.
    11. Peter Bank & Frank Riedel, 2003. "Optimal Dynamic Choice of Durable and Perishable Goods," Levine's Bibliography 666156000000000402, UCLA Department of Economics.
    12. Bertola, Giuseppe, 1998. "Irreversible investment," Research in Economics, Elsevier, vol. 52(1), pages 3-37, March.
    13. Ken-ichi Inada, 1963. "On a Two-Sector Model of Economic Growth: Comments and a Generalization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(2), pages 119-127.
    14. Xing, Wei & Wang, Shouyang & Liu, Liming, 2012. "Optimal ordering and pricing strategies in the presence of a B2B spot market," European Journal of Operational Research, Elsevier, vol. 221(1), pages 87-98.
    15. Benkherouf, Lakdere, 2007. "On a stochastic inventory model with a generalized holding costs," European Journal of Operational Research, Elsevier, vol. 182(2), pages 730-737, October.
    16. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    17. Seifert, Ralf W. & Thonemann, Ulrich W. & Hausman, Warren H., 2004. "Optimal procurement strategies for online spot markets," European Journal of Operational Research, Elsevier, vol. 152(3), pages 781-799, February.
    18. Tarim, S. Armagan & Kingsman, Brian G., 2004. "The stochastic dynamic production/inventory lot-sizing problem with service-level constraints," International Journal of Production Economics, Elsevier, vol. 88(1), pages 105-119, March.
    19. repec:dau:papers:123456789/1433 is not listed on IDEAS
    20. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerardo Berbeglia & Gautam Rayaprolu & Adrian Vetta, 2019. "Pricing policies for selling indivisible storable goods to strategic consumers," Annals of Operations Research, Springer, vol. 274(1), pages 131-154, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrari, Giorgio & Riedel, Frank & Steg, Jan-Henrik, 2016. "Continuous-Time Public Good Contribution under Uncertainty," Center for Mathematical Economics Working Papers 485, Center for Mathematical Economics, Bielefeld University.
    2. Giorgio Ferrari & Frank Riedel & Jan-Henrik Steg, 2013. "Continuous-Time Public Good Contribution under Uncertainty: A Stochastic Control Approach," Papers 1307.2849, arXiv.org, revised Oct 2015.
    3. Koch, Torben & Vargiolu, Tiziano, 2019. "Optimal Installation of Solar Panels with Price Impact: a Solvable Singular Stochastic Control Problem," Center for Mathematical Economics Working Papers 627, Center for Mathematical Economics, Bielefeld University.
    4. Dianetti, Jodi & Ferrari, Giorgio, 2019. "Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria," Center for Mathematical Economics Working Papers 605, Center for Mathematical Economics, Bielefeld University.
    5. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    6. Giorgio Ferrari & Hanwu Li & Frank Riedel, 2020. "A Knightian Irreversible Investment Problem," Papers 2003.14359, arXiv.org, revised Apr 2020.
    7. Ferrari, Giorgio & Salminen, Paavo, 2016. "Irreversible Investment under Lévy Uncertainty: an Equation for the Optimal Boundary," Center for Mathematical Economics Working Papers 530, Center for Mathematical Economics, Bielefeld University.
    8. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    9. Giorgio Ferrari, 2012. "On an integral equation for the free-boundary of stochastic, irreversible investment problems," Papers 1211.0412, arXiv.org, revised Jan 2015.
    10. Dianetti, Jodi, 2023. "Linear-Quadratic-Singular Stochastic Differential Games and Applications," Center for Mathematical Economics Working Papers 678, Center for Mathematical Economics, Bielefeld University.
    11. Maria B. Chiarolla & Giorgio Ferrari & Frank Riedel, 2012. "Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources," Papers 1203.3757, arXiv.org, revised Aug 2013.
    12. Giorgio Ferrari & Paavo Salminen, 2014. "Irreversible Investment under L\'evy Uncertainty: an Equation for the Optimal Boundary," Papers 1411.2395, arXiv.org.
    13. Junkee Jeon & Geonwoo Kim, 2020. "An Integral Equation Approach to the Irreversible Investment Problem with a Finite Horizon," Mathematics, MDPI, vol. 8(11), pages 1-10, November.
    14. Aïd, René & Basei, Matteo & Ferrari, Giorgio, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Center for Mathematical Economics Working Papers 679, Center for Mathematical Economics, Bielefeld University.
    15. Tiziano De Angelis & Giorgio Ferrari & John Moriarty, 2014. "A Non Convex Singular Stochastic Control Problem and its Related Optimal Stopping Boundaries," Papers 1405.2442, arXiv.org, revised Nov 2014.
    16. Peter Bank & David Besslich, 2018. "Modelling information flows by Meyer-$\sigma$-fields in the singular stochastic control problem of irreversible investment," Papers 1810.08495, arXiv.org, revised Mar 2020.
    17. Ren'e Aid & Matteo Basei & Giorgio Ferrari, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Papers 2305.00541, arXiv.org.
    18. Peter Bank & Yan Dolinsky, 2018. "Continuous-time Duality for Super-replication with Transient Price Impact," Papers 1808.09807, arXiv.org, revised May 2019.
    19. Almendra Awerkin & Tiziano Vargiolu, 2021. "Optimal installation of renewable electricity sources: the case of Italy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1179-1209, December.
    20. Tiziano De Angelis & Salvatore Federico & Giorgio Ferrari, 2017. "Optimal Boundary Surface for Irreversible Investment with Stochastic Costs," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1135-1161, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1409.0665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.