IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/566.html
   My bibliography  Save this paper

Optimal entry to an irreversible investment plan with non convex costs

Author

Listed:
  • de Angelis, Tiziano

    (Center for Mathematical Economics, Bielefeld University)

  • Ferrari, Giorgio

    (Center for Mathematical Economics, Bielefeld University)

  • Martyr, Randall

    (Center for Mathematical Economics, Bielefeld University)

  • Moriarty, John

    (Center for Mathematical Economics, Bielefeld University)

Abstract

A problem of optimally purchasing electricity at a real-valued spot price (that is, with potentially negative cost) has been recently addressed in De Angelis, Ferrari and Moriarty (2015) [SIAM J. Control Optim. 53(3)]. This problem can be considered one of irreversible investment with a cost functional which is non convex with respect to the control variable. In this paper we study the optimal entry into this investment plan. The optimal entry policy can have an irregular boundary arising from this non convexity, with a kinked shape.

Suggested Citation

  • de Angelis, Tiziano & Ferrari, Giorgio & Martyr, Randall & Moriarty, John, 2016. "Optimal entry to an irreversible investment plan with non convex costs," Center for Mathematical Economics Working Papers 566, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:566
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2904756/2904758
    File Function: First Version, 2016
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiziano De Angelis & Giorgio Ferrari & John Moriarty, 2014. "A Non Convex Singular Stochastic Control Problem and its Related Optimal Stopping Boundaries," Papers 1405.2442, arXiv.org, revised Nov 2014.
    2. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    3. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    4. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    5. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    6. repec:dau:papers:123456789/1433 is not listed on IDEAS
    7. Guo, Xin & Pham, Huyên, 2005. "Optimal partially reversible investment with entry decision and general production function," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 705-736, May.
    8. Dixit, Avinash K, 1989. "Entry and Exit Decisions under Uncertainty," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 620-638, June.
    9. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    10. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    11. McDonald, Robert L & Siegel, Daniel R, 1985. "Investment and the Valuation of Firms When There Is an Option to Shut Down," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(2), pages 331-349, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    2. Bolton, Patrick & Wang, Neng & Yang, Jinqiang, 2019. "Investment under uncertainty with financial constraints," Journal of Economic Theory, Elsevier, vol. 184(C).
    3. Giorgio Ferrari & Tiziano Vargiolu, 2020. "On the singular control of exchange rates," Annals of Operations Research, Springer, vol. 292(2), pages 795-832, September.
    4. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "A solvable two-dimensional degenerate singular stochastic control problem with non convex costs," Center for Mathematical Economics Working Papers 531, Center for Mathematical Economics, Bielefeld University.
    5. de Angelis, Tiziano & Ferrari, Giorgio, 2016. "Stochastic nonzero-sum games: a new connection between singular control and optimal stopping," Center for Mathematical Economics Working Papers 565, Center for Mathematical Economics, Bielefeld University.
    6. Alvarez, Luis H. R., 1998. "Exit strategies and price uncertainty: a Greenian approach," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 43-56, January.
    7. Tsekrekos, Andrianos E., 2010. "The effect of mean reversion on entry and exit decisions under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 725-742, April.
    8. Tauer, Loren W., 2006. "When to Get In and Out of Dairy Farming: A Real Option Analysis," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(2), pages 339-347, October.
    9. Tiziano De Angelis & Fabien Gensbittel & St'ephane Villeneuve, 2017. "A Dynkin game on assets with incomplete information on the return," Papers 1705.07352, arXiv.org, revised May 2019.
    10. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    11. Tiziano De Angelis & Giorgio Ferrari & John Moriarty, 2014. "A Non Convex Singular Stochastic Control Problem and its Related Optimal Stopping Boundaries," Papers 1405.2442, arXiv.org, revised Nov 2014.
    12. Lander, Diane M. & Pinches, George E., 1998. "Challenges to the Practical Implementation of Modeling and Valuing Real Options," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 537-567.
    13. Jyh-Bang Jou, 2000. "Irreversible Investment Decisions Under Uncertainty with Tax Holidays," Public Finance Review, , vol. 28(1), pages 66-81, January.
    14. Lu, Jin-Ray & Hwang, Chih-Chiang & Lin, Chien-Yi, 2016. "Do shareholders appreciate capital investment policies of corporations?," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 344-353.
    15. McCarthy, Robert, 2006. "On the dynamics of health capital accumulation," Social Science & Medicine, Elsevier, vol. 63(3), pages 817-828, August.
    16. Shackleton, Mark B. & Tsekrekos, Andrianos E. & Wojakowski, Rafal, 2004. "Strategic entry and market leadership in a two-player real options game," Journal of Banking & Finance, Elsevier, vol. 28(1), pages 179-201, January.
    17. Jean-Paul Décamps & Stéphane Villeneuve, 2007. "Optimal dividend policy and growth option," Finance and Stochastics, Springer, vol. 11(1), pages 3-27, January.
    18. Davis, Graham A. & Cairns, Robert D., 2017. "The odd notion of “reversible investment”," Journal of Banking & Finance, Elsevier, vol. 81(C), pages 172-180.
    19. Fan, Ying & Zhu, Lei, 2010. "A real options based model and its application to China's overseas oil investment decisions," Energy Economics, Elsevier, vol. 32(3), pages 627-637, May.
    20. Manfred Fruhwirth & Paul Schneider & Markus S. Schwaiger, 2007. "Timing Decisions in a Multinational Context: Implementing the Amin/Bodurtha Framework," Multinational Finance Journal, Multinational Finance Journal, vol. 11(3-4), pages 157-178, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.