IDEAS home Printed from https://ideas.repec.org/p/bep/hvdbio/1013.html
   My bibliography  Save this paper

The Optimal Confidence Region for a Random Parameter

Author

Listed:
  • Hajime Uno

    (Harvard University)

  • Lu Tian

    (Northwestern University)

  • L.J. Wei

    (Harvard University)

Abstract

Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study.

Suggested Citation

  • Hajime Uno & Lu Tian & L.J. Wei, 2004. "The Optimal Confidence Region for a Random Parameter," Harvard University Biostatistics Working Paper Series 1013, Berkeley Electronic Press.
  • Handle: RePEc:bep:hvdbio:1013
    Note: oai:bepress.com:harvardbiostat-1013
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1013&context=harvardbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & Malay Ghosh & David Daniel Smith & Parthasarathi Lahiri, 2002. "On an Asymptotic Theory of Conditional and Unconditional Coverage Probabilities of Empirical Bayes Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 139-152, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    2. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    3. Malay Ghosh & Tapabrata Maiti, 2008. "Empirical Bayes Confidence Intervals for Means of Natural Exponential Family‐Quadratic Variance Function Distributions with Application to Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 484-495, September.
    4. Tatsuya Kubokawa, 2010. "On Measuring Uncertainty of Small Area Estimators with Higher Order Accuracy," CIRJE F-Series CIRJE-F-754, CIRJE, Faculty of Economics, University of Tokyo.
    5. Hirose, Masayo Yoshimori, 2017. "Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 67-78.
    6. Berg Emily, 2022. "Construction of Databases for Small Area Estimation," Journal of Official Statistics, Sciendo, vol. 38(3), pages 673-708, September.
    7. Tatsuya Kubokawa, 2009. "A Review of Linear Mixed Models and Small Area Estimation," CIRJE F-Series CIRJE-F-702, CIRJE, Faculty of Economics, University of Tokyo.
    8. Tatsuya Kubokawa, 2009. "Corrected Empirical Bayes Confidence Intervals in Nested Error Regression Models," CIRJE F-Series CIRJE-F-632, CIRJE, Faculty of Economics, University of Tokyo.
    9. Tatsuya Kubokawa & Bui Nagashima, 2011. "Parametric Bootstrap Methods for Bias Correction in Linear Mixed Models," CIRJE F-Series CIRJE-F-801, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:hvdbio:1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.