IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/756.html
   My bibliography  Save this paper

Forecasting annual inflation with power transformations: the case of inflation targeting countries

Author

Listed:
  • Hector Manuel Zárate Solano
  • Angélica Rengifo Gómez

Abstract

This paper investigates whether transforming the Consumer Price Index with a class of power transformations lead to an improvement of inflation forecasting accuracy. We use one of the prototypical models to forecast short run inflation which is known as the univariate time series ARIMA . This model is based on past inflation which is traditionally approximated by the difference of logarithms of the underlying consumer price index. The common practice of applying the logarithm could damage the forecast precision if this transformation does not stabilize the variance adequately. In this paper we investigate the benefits of incorporating these transformations using a sample of 28 countries that has adopted the inflation targeting framework. An appropriate transformation reduces problems with estimation, prediction and inference. The choice of the parameter is done by bayesian grounds.

Suggested Citation

  • Hector Manuel Zárate Solano & Angélica Rengifo Gómez, 2013. "Forecasting annual inflation with power transformations: the case of inflation targeting countries," Borradores de Economia 756, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:756
    DOI: 10.32468/be.756
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.756
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philip Hans Franses & Michael McAleer, 1998. "Testing for Unit Roots and Non‐linear Transformations," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(2), pages 147-164, March.
    2. Luetkepohl Helmut & Xu Fang, 2011. "Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-23, February.
    3. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    4. Proietti, Tommaso & Lütkepohl, Helmut, 2013. "Does the Box–Cox transformation help in forecasting macroeconomic time series?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 88-99.
    5. Hosoya, Yuzo & Terasaka, Takahiro, 2009. "Inference on transformed stationary time series," Journal of Econometrics, Elsevier, vol. 151(2), pages 129-139, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santiago Cajiao Raigosa & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Pronósticos para una economía menos volátil: el caso colombiano," Coyuntura Económica, Fedesarrollo, December.
    2. Mayr, Johannes & Ulbricht, Dirk, 2015. "Log versus level in VAR forecasting: 42 million empirical answers—Expect the unexpected," Economics Letters, Elsevier, vol. 126(C), pages 40-42.
    3. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    4. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    5. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    6. Donald L. Kohn, 2008. "Lessons for central bankers from a Phillips curve framework," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    7. González-Rivera, Gloria & Sun, Yingying, 2017. "Density forecast evaluation in unstable environments," International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.
    8. Gareis, Johannes & Mayer, Eric, 2020. "Financial shocks and the relative dynamics of tangible and intangible investment: Evidence from the euro area," Discussion Papers 39/2020, Deutsche Bundesbank.
    9. Hertrich Markus, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.
    10. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    11. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    12. Ivan Kitov & Oleg Kitov, 2013. "Does Banque de France control inflation and unemployment?," Papers 1311.1097, arXiv.org.
    13. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    16. Craig S. Hakkio, 2009. "Global inflation dynamics," Research Working Paper RWP 09-01, Federal Reserve Bank of Kansas City.
    17. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    18. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    19. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
    20. Verbrugge, Randal & Zaman, Saeed, 2023. "The hard road to a soft landing: Evidence from a (modestly) nonlinear structural model," Energy Economics, Elsevier, vol. 123(C).

    More about this item

    Keywords

    ARIMA models; power transformations; seasonality; bayesian analysis.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.