IDEAS home Printed from https://ideas.repec.org/p/bdm/wpaper/2009-06.html
   My bibliography  Save this paper

An Alternative Formula to Price American Options

Author

Listed:
  • Elizondo Rocío
  • Padilla Pablo
  • Bladt Mogens

Abstract

We give a new way to price American options, using Samuelson's formula. We first obtain the option price corresponding to a European option at time t, weighting it by the probability that the underlying asset takes the value S at time t. This factor is given by the solution of the Fokker-Planck (Kolmogorov) equation for the transition probability density. The main advantage of this approach is that we can introduce systematically the effect of macroeconomic factors. If a macroeconomic framework is given by a dynamic system in the form of a set of ordinary differential equations we only have to solve a partial differential equation, for the transition probability density. In this context, we verify, for the sake of completeness, that this formula is consistent with the Black-Scholes model.

Suggested Citation

  • Elizondo Rocío & Padilla Pablo & Bladt Mogens, 2009. "An Alternative Formula to Price American Options," Working Papers 2009-06, Banco de México.
  • Handle: RePEc:bdm:wpaper:2009-06
    as

    Download full text from publisher

    File URL: https://www.banxico.org.mx/publicaciones-y-prensa/documentos-de-investigacion-del-banco-de-mexico/%7BB33A463D-0713-558E-84C7-16EE0B659CDD%7D.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elizondo Rocío & Padilla Pablo, 2008. "An Analytical Approach to Merton's Rational Option Pricing Theory," Working Papers 2008-03, Banco de México.
    2. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    3. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    4. Sergei Levendorskii, 2004. "The American put and European options near expiry, under Levy processes," Papers cond-mat/0404103, arXiv.org.
    5. Robert A. Jarrow, 1988. "Preferences, Continuity, and the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 1(2), pages 159-172.
    6. Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    7. Bladt, Mogens & Rydberg, Tina Hviid, 1998. "An actuarial approach to option pricing under the physical measure and without market assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 65-73, May.
    8. Francesc Llerena-Garrés, 2000. "Una nota sobre valoración de opciones americanas y arbitraje," Investigaciones Economicas, Fundación SEPI, vol. 24(1), pages 207-218, January.
    9. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    2. Zhang, Hongyu & Guo, Xunxiang & Wang, Ke & Huang, Shoude, 2024. "The valuation of American options with the stochastic liquidity risk and jump risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    3. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    4. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    5. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    6. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    7. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    8. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    9. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    10. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    11. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    12. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    13. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    14. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    15. Jing Zhao & Hoi Ying Wong, 2012. "A closed-form solution to American options under general diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 725-737, July.
    16. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    17. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    20. San-Lin Chung & Mark Shackleton, 2005. "On the use and improvement of Hull and White's control variate technique," Applied Financial Economics, Taylor & Francis Journals, vol. 15(16), pages 1171-1179.

    More about this item

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdm:wpaper:2009-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Subgerencia de desarrollo de sistemas (email available below). General contact details of provider: https://edirc.repec.org/data/bangvmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.