IDEAS home Printed from https://ideas.repec.org/p/bdi/opques/qef_909_25.html
   My bibliography  Save this paper

Forecasting corporate default probabilities: a local logit approach for scenario analysis

Author

Listed:
  • Giuseppe Cascarino

    (Bank of Italy)

  • Federica Ciocchetta

    (Bank of Italy)

  • Stefano Pietrosanti

    (Bank of Italy)

  • Ivan Quaglia

    (Bank of Italy)

Abstract

We propose a new approach for predicting corporate default probabilities and for conducting scenario analyses by combining firm-level and macro time series data. We apply a local projection approach to a simple logit framework and bridge the gap between micro data on firms, for which no scenario is available, and macroeconomic variables, for which the forecaster instead has a scenario. We apply this model to an out-of-sample exercise, estimating it with data through the end of 2017 and forecasting corporate defaults over the following three years. We compute two sets of projections, the first based on the realized values of the macroeconomic time series (baseline), and the second conditional on a scenario that simulates a worsening in the macroeconomic environment comparable to the one observed during the European sovereign debt crisis (adverse). The baseline forecast closely matches the actual corporate debt default rate; under the adverse scenario, the default rate is similar to the one actually recorded in Italy during the sovereign debt crisis. We also run two exercises that make use of the granular forecasts of the corporate default probabilities. First, we assess which sectors are more vulnerable under each of the previous two scenarios (baseline and adverse). Second, we assume that the economy shifts from the baseline to the adverse scenario and construct transition matrices across different risk classes, showing which sectors are more exposed to the shift.

Suggested Citation

  • Giuseppe Cascarino & Federica Ciocchetta & Stefano Pietrosanti & Ivan Quaglia, 2025. "Forecasting corporate default probabilities: a local logit approach for scenario analysis," Questioni di Economia e Finanza (Occasional Papers) 909, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:opques:qef_909_25
    as

    Download full text from publisher

    File URL: https://www.bancaditalia.it/pubblicazioni/qef/2025-0909/QEF_909_25.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tor Jacobson & Jesper Lindé & Kasper Roszbach, 2013. "Firm Default And Aggregate Fluctuations," Journal of the European Economic Association, European Economic Association, vol. 11(4), pages 945-972, August.
    2. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    3. Glennon, Dennis & Nigro, Peter, 2005. "Measuring the Default Risk of Small Business Loans: A Survival Analysis Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(5), pages 923-947, October.
    4. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    5. Carling, Kenneth & Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2007. "Corporate credit risk modeling and the macroeconomy," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 845-868, March.
    6. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "The Aftermath of Financial Crises," American Economic Review, American Economic Association, vol. 99(2), pages 466-472, May.
    7. Pablo Ottonello & Thomas Winberry, 2020. "Financial Heterogeneity and the Investment Channel of Monetary Policy," Econometrica, Econometric Society, vol. 88(6), pages 2473-2502, November.
    8. Òscar Jordá & Moritz Schularick & Alan M. Taylor, 2016. "Sovereigns Versus Banks: Credit, Crises, and Consequences," Journal of the European Economic Association, European Economic Association, vol. 14(1), pages 45-79.
    9. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    10. Moritz Schularick & Alan M. Taylor, 2012. "Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and Financial Crises, 1870-2008," American Economic Review, American Economic Association, vol. 102(2), pages 1029-1061, April.
    11. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    12. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya A., 2014. "Macroeconomic effects of corporate default crisis: A long-term perspective," Journal of Financial Economics, Elsevier, vol. 111(2), pages 297-310.
    13. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    14. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    15. Giuseppe Cascarino & Mirko Moscatelli & Fabio Parlapiano, 2022. "Explainable Artificial Intelligence: interpreting default forecasting models based on Machine Learning," Questioni di Economia e Finanza (Occasional Papers) 674, Bank of Italy, Economic Research and International Relations Area.
    16. De Socio, Antonio & Michelangeli, Valentina, 2017. "A model to assess the financial vulnerability of Italian firms," Journal of Policy Modeling, Elsevier, vol. 39(1), pages 147-168.
    17. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    18. Thais Lærkholm Jensen & David Lando & Mamdouh Medhat, 2017. "Cyclicality and Firm Size in Private Firm Defaults," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 97-145, December.
    19. Nicolas Crouzet & Neil R. Mehrotra, 2020. "Small and Large Firms over the Business Cycle," American Economic Review, American Economic Association, vol. 110(11), pages 3549-3601, November.
    20. Tommaso Orlando & Giacomo Rodano, 2020. "Firm undercapitalization in Italy: business crisis and survival before and after COVID-19," Questioni di Economia e Finanza (Occasional Papers) 590, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    2. Ilyes Abid & Farid Mkaouar & Olfa Kaabia, 2018. "Dynamic analysis of the forecasting bankruptcy under presence of unobserved heterogeneity," Annals of Operations Research, Springer, vol. 262(2), pages 241-256, March.
    3. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    4. Emilia Bonaccorsi di Patti & Alessio D’Ignazio & Marco Gallo & Giacinto Micucci, 2015. "The Role of Leverage in Firm Solvency: Evidence From Bank Loans," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(2), pages 253-286, July.
    5. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.
    6. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    7. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    8. Bruneau, C. & de Bandt, O. & El Amri, W., 2012. "Macroeconomic fluctuations and corporate financial fragility," Journal of Financial Stability, Elsevier, vol. 8(4), pages 219-235.
    9. Paulo V. Carvalho & José D. Curto & Rodrigo Primor, 2022. "Macroeconomic determinants of credit risk: Evidence from the Eurozone," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2054-2072, April.
    10. Bátiz-Zuk Enrique & Mohamed Abdulkadir & Sánchez-Cajal Fátima, 2021. "Exploring the sources of loan default clustering using survival analysis with frailty," Working Papers 2021-14, Banco de México.
    11. Dimitra Michala & Theoharry Grammatikos & Sara Ferreira Filipe, 2013. "Forecasting distress in European SME portfolios," DEM Discussion Paper Series 13-2, Department of Economics at the University of Luxembourg.
    12. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    13. Zhang, Xuan & Zhao, Yang & Yao, Xiao, 2022. "Forecasting corporate default risk in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1054-1070.
    14. Dimitra Michala & Theoharry Grammatikos & Sara Ferreira Filipe, 2013. "Forecasting distress in European SME portfolios," LSF Research Working Paper Series 13-2, Luxembourg School of Finance, University of Luxembourg.
    15. Foug re, D. & Golfier, C. & Horny, G. & Kremp, E., 2013. "What has been the impact of the 2008 crisis on firms default? (in French)," Working papers 463, Banque de France.
    16. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    17. Michael Halling & Evelyn Hayden, 2008. "Bank failure prediction: a two-step survival time approach," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The IFC's contribution to the 56th ISI Session, Lisbon, August 2007, volume 28, pages 48-73, Bank for International Settlements.
    18. Koresh Galil & Neta Gilat, 2019. "Predicting Default More Accurately: To Proxy or Not to Proxy for Default?," International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.
    19. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    20. Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.

    More about this item

    Keywords

    scenario analysis; logit model; credit risk;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:opques:qef_909_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.