Application of classification algorithms for the assessment of confirmation to quality remarks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Tobias Cagala, 2017. "Improving data quality and closing data gaps with machine learning," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data needs and Statistics compilation for macroprudential analysis, volume 46, Bank for International Settlements.
- Fabio Zambuto, 2021.
"Quality checks on granular banking data: an experimental approach based on machine learning,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Micro data for the macro world, volume 53,
Bank for International Settlements.
- Fabio Zambuto & Maria Rosaria Buzzi & Giuseppe Costanzo & Marco Di Lucido & Barbara La Ganga & Pasquale Maddaloni & Fabio Papale & Emiliano Svezia, 2020. "Quality checks on granular banking data: an experimental approach based on machine learning?," Questioni di Economia e Finanza (Occasional Papers) 547, Bank of Italy, Economic Research and International Relations Area.
- Francesco Cusano & Giuseppe Marinelli & Stefano Piermattei, 2021. "Learning from revisions: a tool for detecting potential errors in banks' balance sheet statistical reporting," Questioni di Economia e Finanza (Occasional Papers) 611, Bank of Italy, Economic Research and International Relations Area.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vittoria La Serra & Emiliano Svezia, 2024. "A supervised record linkage approach for anomaly detection in insurance assets granular data," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4181-4205, October.
- Francesco Cusano & Giuseppe Marinelli & Stefano Piermattei, 2022. "Learning from revisions: an algorithm to detect errors in banks’ balance sheet statistical reporting," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4025-4059, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Francesco Cusano & Giuseppe Marinelli & Stefano Piermattei, 2022. "Learning from revisions: an algorithm to detect errors in banks’ balance sheet statistical reporting," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4025-4059, December.
- Francesco Cusano & Giuseppe Marinelli & Stefano Piermattei, 2021. "Learning from revisions: a tool for detecting potential errors in banks' balance sheet statistical reporting," Questioni di Economia e Finanza (Occasional Papers) 611, Bank of Italy, Economic Research and International Relations Area.
- Vittoria La Serra & Emiliano Svezia, 2024. "A supervised record linkage approach for anomaly detection in insurance assets granular data," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4181-4205, October.
- Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023.
"Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59,
Bank for International Settlements.
- Pasquale Maddaloni & Davide Nicola Continanza & Andrea del Monaco & Daniele Figoli & Marco di Lucido & Filippo Quarta & Giuseppe Turturiello, 2022. "Stacking machine-learning models for anomaly detection: comparing AnaCredit to other banking datasets," Questioni di Economia e Finanza (Occasional Papers) 689, Bank of Italy, Economic Research and International Relations Area.
- Fabio Zambuto, 2021.
"Quality checks on granular banking data: an experimental approach based on machine learning,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Micro data for the macro world, volume 53,
Bank for International Settlements.
- Fabio Zambuto & Maria Rosaria Buzzi & Giuseppe Costanzo & Marco Di Lucido & Barbara La Ganga & Pasquale Maddaloni & Fabio Papale & Emiliano Svezia, 2020. "Quality checks on granular banking data: an experimental approach based on machine learning?," Questioni di Economia e Finanza (Occasional Papers) 547, Bank of Italy, Economic Research and International Relations Area.
- repec:zbw:bofitp:2019_008 is not listed on IDEAS
- Joseph, Andreas & Vasios, Michalis, 2022. "OTC Microstructure in a period of stress: A Multi-layered network approach," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Martin Baumgaertner & Johannes Zahner, 2021.
"Whatever it takes to understand a central banker - Embedding their words using neural networks,"
MAGKS Papers on Economics
202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Zahner, Johannes & Baumgärtner, Martin, 2022. "Whatever it Takes to Understand a Central Banker – Embedding their Words Using Neural Networks," VfS Annual Conference 2022 (Basel): Big Data in Economics 264019, Verein für Socialpolitik / German Economic Association.
- Baumgärtner, Martin & Zahner, Johannes, 2023. "Whatever it takes to understand a central banker: Embedding their words using neural networks," IMFS Working Paper Series 194, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Andrea Carboni & Alessandro Moro, 2018. "Imputation techniques for the nationality of foreign shareholders in Italian firms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), External sector statistics: current issues and new challenges, volume 48, Bank for International Settlements.
- Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
- Joseph, Andreas, 2019. "Parametric inference with universal function approximators," Bank of England working papers 784, Bank of England, revised 22 Jul 2020.
- Long Ren & Shaojie Cong & Xinlong Xue & Daqing Gong, 2024. "Credit rating prediction with supply chain information: a machine learning perspective," Annals of Operations Research, Springer, vol. 342(1), pages 657-686, November.
- Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
- Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024.
"Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning,"
NBER Working Papers
33117, National Bureau of Economic Research, Inc.
- Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the curse of dimensionality: quantitative economics with deep learning," Working Papers 2444, Banco de España.
- Jesús Fernández-Villaverde & Galo Nuno & Jesse Perla, 2024. "Taming the Curse of Dimensionality:Quantitative Economics with Deep Learning," PIER Working Paper Archive 24-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Jésus Fernández-Villaverde & Galo Nuño & Jesse Perla & Jesús Fernández-Villaverde, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," CESifo Working Paper Series 11448, CESifo.
- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- Defina, Ryan, 2021.
"Machine Learning Methods: Potential for Deposit Insurance,"
MPRA Paper
110712, University Library of Munich, Germany.
- Ryan Defina, 2021. "Machine Learning Methods: Potential for Deposit Insurance," IADI Fintech Briefs 3, International Association of Deposit Insurers.
More about this item
Keywords
supervisory banking data; data quality management; machine learning; text mining; latent dirichlet allocation; gradient boosting.;All these keywords.
JEL classification:
- C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
- C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-16 (Big Data)
- NEP-CMP-2021-08-16 (Computational Economics)
- NEP-ISF-2021-08-16 (Islamic Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:opques:qef_631_21. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.