IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/06-12.html
   My bibliography  Save this paper

Sieve inference on semi-nonparametric time series models

Author

Listed:
  • Xiaohong Chen
  • . .
  • Yixiao Sun

Abstract

The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a "pre-asymptotic" sieve variance estimator that captures temporal dependence. We construct a "pre-asymptotic" Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled "pre-asymptotic" Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled "pre-asymptotic" Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.

Suggested Citation

  • Xiaohong Chen & . . & Yixiao Sun, 2012. "Sieve inference on semi-nonparametric time series models," CeMMAP working papers 06/12, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:06/12
    DOI: 10.1920/wp.cem.2012.0612
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0612.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2012.0612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(1), pages 116-142, February.
    2. Michael Jansson, 2004. "The Error in Rejection Probability of Simple Autocorrelation Robust Tests," Econometrica, Econometric Society, vol. 72(3), pages 937-946, May.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    5. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-487.
    6. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    7. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    8. Xiaohong Chen, 2011. "Penalized Sieve Estimation and Inference of Semi-Nonparametric Dynamic Models: A Selective Review," Cowles Foundation Discussion Papers 1804, Cowles Foundation for Research in Economics, Yale University.
    9. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    10. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    11. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    12. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    13. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    14. Conley, Timothy G. & Hansen, Lars Peter & Liu, Wen-Fang, 1997. "Bootstrapping The Long Run," Macroeconomic Dynamics, Cambridge University Press, vol. 1(2), pages 279-311, June.
    15. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(1), pages 37-70, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Zhipeng Liao & Yixiao Sun, 2012. "Sieve Inference on Semi-nonparametric Time Series Models," Cowles Foundation Discussion Papers 1849, Cowles Foundation for Research in Economics, Yale University.
    2. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    3. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    4. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    5. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    6. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    7. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    8. Chen, Xiaohong & Liao, Zhipeng, 2015. "Sieve semiparametric two-step GMM under weak dependence," Journal of Econometrics, Elsevier, vol. 189(1), pages 163-186.
    9. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    10. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    11. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    12. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    13. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    14. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    15. Timothy Christensen, 2014. "Nonparametric Stochastic Discount Factor Decomposition," Papers 1412.4428, arXiv.org, revised May 2017.
    16. Timothy M. Christensen, 2015. "Nonparametric stochastic discount factor decomposition," CeMMAP working papers CWP24/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Dong, Chaohua & Linton, Oliver, 2018. "Additive nonparametric models with time variable and both stationary and nonstationary regressors," Journal of Econometrics, Elsevier, vol. 207(1), pages 212-236.
    18. Bertille Antoine & Xiaolin Sun, 2022. "Partially linear models with endogeneity: a conditional moment-based approach [Efficient estimation of models with conditional moment restrictions containing unknown functions]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 256-275.
    19. repec:cep:stiecm:/2013/570 is not listed on IDEAS
    20. Lee, Jungyoon & Robinson, Peter M., 2013. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 58188, London School of Economics and Political Science, LSE Library.
    21. Jungyoon Lee & Peter M Robinson, 2013. "Series Estimation under Cross-sectional Dependence," STICERD - Econometrics Paper Series 570, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:06/12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.