IDEAS home Printed from https://ideas.repec.org/p/awi/wpaper/0687.html
   My bibliography  Save this paper

Measuring skill and chance in different versions of Poker

Author

Listed:
  • Lambrecht, Marco

Abstract

This paper aims to measure skill and chance in different versions of online poker, using the best-fit Elo algorithm established in the first chapter. While Texas Hold'em arguably is the most popular version being played, the amount of skill involved might differ from other versions like Omaha Hold'em. Many platforms offer faster procedures to play (e.g. "hyper turbo"), as well as different levels of stakes. Given the richness of online poker data, it is possible to isolate the impact of these variations individually. The heterogeneity of best-fit Elo ratings decreases in quicker competitions or with higher stakes. Meanwhile, Omaha seems to contain more elements of skill than Texas Hold'em, as its analysis shows a wider distribution of skill levels of players.

Suggested Citation

  • Lambrecht, Marco, 2020. "Measuring skill and chance in different versions of Poker," Working Papers 0687, University of Heidelberg, Department of Economics.
  • Handle: RePEc:awi:wpaper:0687
    Note: This paper is part of http://archiv.ub.uni-heidelberg.de/volltextserver/view/schriftenreihen/sr-3.html
    as

    Download full text from publisher

    File URL: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bsz:16-heidok-288226
    File Function: Frontdoor page on HeiDOK
    Download Restriction: no

    File URL: https://archiv.ub.uni-heidelberg.de/volltextserver/28822/1/Lambrecht_2020_dp687.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Marcel Dreef & Peter Borm & Ben van der Genugten, 2003. "On Strategy and Relative Skill in Poker," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 83-103.
    3. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    4. Rogier J D Potter van Loon & Martijn J van den Assem & Dennie van Dolder, 2015. "Beyond Chance? The Persistence of Performance in Online Poker," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    2. Adriaan R. Soetevent, 2006. "Empirics of the Identification of Social Interactions; An Evaluation of the Approaches and Their Results," Journal of Economic Surveys, Wiley Blackwell, vol. 20(2), pages 193-228, April.
    3. Todd Guilfoos & Andreas Duus Pape, 2020. "Estimating Case-Based Learning," Games, MDPI, vol. 11(3), pages 1-25, September.
    4. Battigalli, Pierpaolo & Dufwenberg, Martin, 2009. "Dynamic psychological games," Journal of Economic Theory, Elsevier, vol. 144(1), pages 1-35, January.
    5. I. Lubashevsky & S. Kanemoto, 2010. "Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(1), pages 69-85, July.
    6. Schipper, Burkhard C., 2021. "Discovery and equilibrium in games with unawareness," Journal of Economic Theory, Elsevier, vol. 198(C).
    7. Napel, Stefan & Widgrén, Mika, 2017. "Power measurement as sensitivity analysis: a unified approach," Center for Mathematical Economics Working Papers 345, Center for Mathematical Economics, Bielefeld University.
    8. Atanasios Mitropoulos, 2001. "Learning Under Little Information: An Experiment on Mutual Fate Control," Game Theory and Information 0110003, University Library of Munich, Germany.
    9. W. Hichri & A. Kirman, 2007. "The emergence of coordination in public good games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 149-159, January.
    10. Mathieu Faure & Gregory Roth, 2010. "Stochastic Approximations of Set-Valued Dynamical Systems: Convergence with Positive Probability to an Attractor," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 624-640, August.
    11. Ingela Alger & Laurent Lehmann, 2023. "Evolution of Semi-Kantian Preferences in Two-Player Assortative Interactions with Complete and Incomplete Information and Plasticity," Dynamic Games and Applications, Springer, vol. 13(4), pages 1288-1319, December.
    12. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    13. Elkind, Edith & Grandi, Umberto & Rossi, Francesca & Slinko, Arkadii, 2020. "Cognitive hierarchy and voting manipulation in k-approval voting," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 193-205.
    14. Cabrales, Antonio & Serrano, Roberto, 2011. "Implementation in adaptive better-response dynamics: Towards a general theory of bounded rationality in mechanisms," Games and Economic Behavior, Elsevier, vol. 73(2), pages 360-374.
    15. Dürsch, Peter & Kolb, Albert & Oechssler, Jörg & Schipper, Burkhard C., 2005. "Rage Against the Machines: How Subjects Learn to Play Against Computers," Bonn Econ Discussion Papers 31/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    16. Asim Ansari & Ricardo Montoya & Oded Netzer, 2012. "Dynamic learning in behavioral games: A hidden Markov mixture of experts approach," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 475-503, December.
    17. , & ,, 2010. "A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification," Theoretical Economics, Econometric Society, vol. 5(3), September.
    18. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    19. Geoffrey Heal & Howard Kunreuther, 2005. "IDS Models of Airline Security," Journal of Conflict Resolution, Peace Science Society (International), vol. 49(2), pages 201-217, April.
    20. Levine, David K. & Modica, Salvatore, 2013. "Anti-Malthus: Conflict and the evolution of societies," Research in Economics, Elsevier, vol. 67(4), pages 289-306.

    More about this item

    Keywords

    Elo-rating; measuring skill and chance; Poker;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:awi:wpaper:0687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabi Rauscher (email available below). General contact details of provider: https://edirc.repec.org/data/awheide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.