IDEAS home Printed from https://ideas.repec.org/p/aub/autbar/780.09.html
   My bibliography  Save this paper

System GMM Estimation With A Small Sample

Author

Listed:
  • Marcelo Soto

Abstract

Properties of GMM estimators for panel data, which have become very popular in the empirical economic growth literature, are not well known when the number of individuals is small. This paper analyses through Monte Carlo simulations the properties of various GMM and other estimators when the number of individuals is the one typically available in country growth studies. It is found that, provided that some persistency is present in the series, the system GMM estimator has a lower bias and higher efficiency than all the other estimators analysed, including the standard first-differences GMM estimator.

Suggested Citation

  • Marcelo Soto, 2009. "System GMM Estimation With A Small Sample," UFAE and IAE Working Papers 780.09, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  • Handle: RePEc:aub:autbar:780.09
    as

    Download full text from publisher

    File URL: http://pareto.uab.es/wp/2009/78009.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Hartog,Joop & Maassen van den Brink,Henriëtte (ed.), 2007. "Human Capital," Cambridge Books, Cambridge University Press, number 9780521873161, September.
    5. Aghion, Philippe & Bacchetta, Philippe & Rancière, Romain & Rogoff, Kenneth, 2009. "Exchange rate volatility and productivity growth: The role of financial development," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 494-513, May.
    6. Banerjee, Abhijit V & Duflo, Esther, 2003. "Inequality and Growth: What Can the Data Say?," Journal of Economic Growth, Springer, vol. 8(3), pages 267-299, September.
    7. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    8. Richard Blundell & Stephen Bond & Frank Windmeijer, 2000. "Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator," IFS Working Papers W00/12, Institute for Fiscal Studies.
    9. Daniel Cohen & Marcelo Soto, 2007. "Growth and human capital: good data, good results," Journal of Economic Growth, Springer, vol. 12(1), pages 51-76, March.
    10. Caselli, Francesco & Esquivel, Gerardo & Lefort, Fernando, 1996. "Reopening the Convergence Debate: A New Look at Cross-Country Growth Empirics," Journal of Economic Growth, Springer, vol. 1(3), pages 363-389, September.
    11. Philippe Aghion & Peter Howitt, 2009. "The Economics of Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012634, April.
    12. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    13. Carl-Johan Dalgaard & Henrik Hansen & Finn Tarp, 2004. "On The Empirics of Foreign Aid and Growth," Economic Journal, Royal Economic Society, vol. 114(496), pages 191-216, June.
    14. Greenaway, David & Morgan, Wyn & Wright, Peter, 2002. "Trade liberalisation and growth in developing countries," Journal of Development Economics, Elsevier, vol. 67(1), pages 229-244, February.
    15. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    16. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    17. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Vusal Musayev, 2016. "Externalities in Military Spending and Growth: The Role of Natural Resources as a Channel through Conflict," Defence and Peace Economics, Taylor & Francis Journals, vol. 27(3), pages 378-391, June.
    3. Jean-Louis ARCAND & Béatrice D'HOMBRES, 2002. "Explaining the Negative Coefficient Associated with Human Capital in Augmented Solow Growth Regressions," Working Papers 200227, CERDI.
    4. Johanna Vogel, 2015. "The two faces of R&D and human capital: Evidence from Western European regions," Papers in Regional Science, Wiley Blackwell, vol. 94(3), pages 525-551, August.
    5. Coviello, Decio & Islam, Roumeen, 2006. "Does aid help improve economic institutions ?," Policy Research Working Paper Series 3990, The World Bank.
    6. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    7. Lee, Angela Y. & Aaker, Jennifer L., 2006. "A Monte Carlo Study of Growth Regressions," Research Papers 1836r1, Stanford University, Graduate School of Business.
    8. Kufenko, Vadmin & Prettner, Klaus, 2017. "You can't always get what you want? A Monte Carlo analysis of the bias and the efficiency of dynamic panel data estimators," ECON WPS - Working Papers in Economic Theory and Policy 07/2017, TU Wien, Institute of Statistics and Mathematical Methods in Economics, Economics Research Unit.
    9. Vogel, Johanna, 2013. "Regional Convergence in Europe: A Dynamic Heterogeneous Panel Approach," MPRA Paper 51794, University Library of Munich, Germany.
    10. Daniel Halter & Manuel Oechslin & Josef Zweimüller, 2014. "Inequality and growth: the neglected time dimension," Journal of Economic Growth, Springer, vol. 19(1), pages 81-104, March.
    11. Ulaşan, Bülent, 2012. "Cross-country growth empirics and model uncertainty: An overview," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-69.
    12. Grundmann, Rainer & Gries, Thomas, 2015. "Crucial for Modern Sector Development? The Role of Exports and Institutions in Developing Countries," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112962, Verein für Socialpolitik / German Economic Association.
    13. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    14. Thomas Gries & Rainer Grundmann, 2020. "Modern sector development: The role of exports and institutions in developing countries," Review of Development Economics, Wiley Blackwell, vol. 24(2), pages 644-667, May.
    15. Fedderke, Johannes & Klitgaard, Robert, 2013. "How Much Do Rights Matter?," World Development, Elsevier, vol. 51(C), pages 187-206.
    16. Musayev, Vusal, 2013. "Military Spending and Growth: An Empirical Exploration of Contingent Relationships," MPRA Paper 59783, University Library of Munich, Germany.
    17. Diego Bastourre & Jorge Carrera & Javier Ibarlucia, 2009. "What is Driving Reserve Accumulation? A Dynamic Panel Data Approach," Review of International Economics, Wiley Blackwell, vol. 17(4), pages 861-877, September.
    18. Max Kohler & Stefan Sperlich & Jisu Yoon, 2019. "A Varying Coefficient Model for Assessing the Returns to Growth to Account for Poverty and Inequality," Papers 1903.02390, arXiv.org.
    19. KAFANDO, Namalguebzanga, 2014. "L'industrialisation de l'Afrique: l'importance des facteurs structurels et du régime de change [The industrialization of Africa: the importance of structural factors and exchange rate regime]," MPRA Paper 68736, University Library of Munich, Germany.
    20. Łukasz Goczek, 2012. "Metody ekonometryczne w modelach wzrostu gospodarczego," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 10, pages 49-71.

    More about this item

    Keywords

    Economic Growth; System GMM estimation; Monte Carlo Simulations;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aub:autbar:780.09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Xavier Vila (email available below). General contact details of provider: https://edirc.repec.org/data/ufuabes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.