IDEAS home Printed from https://ideas.repec.org/p/asu/wpaper/2133377.html
   My bibliography  Save this paper

Convergence Properties of Policy Iteration

Author

Abstract

This paper analyzes the asymptotic convergence properties of policy iteration in a class of stationary, infinite-horizon Markovian decision problems that arise in optimal growth theory. These problems have continuous state and control variables, and must therefore be discretized in order to compute an approximate solution. The discretization converts a potentially infinite dimensional fixed-point problem to a finite dimensional problem defined on a finite grid of points in the state space, and it may thus render inapplicable known convergence results for policy iteration such as those of Puterman and Brumelle (1979). Under certain regularity conditions, we prove that for piecewise linear interpolation, policy iteration converges quadratically, i.e. the sequence of errors en = |Vn - V*| (where Vn is an approximate value function produced from the nth policy iteration step) satisfies en+1 = Le2n for all n. We show how the constant L depends on the grid size of the discretization. Also, under more general conditions we establish that convergence is superlinear. We illustrate the theoretical results with numerical experiments that compare the performance of policy iteration and the method of successive approximations. The quantitative results are consistent with theoretical predictions.

Suggested Citation

  • Manuel Santos & John Rust, "undated". "Convergence Properties of Policy Iteration," Working Papers 2133377, Department of Economics, W. P. Carey School of Business, Arizona State University.
  • Handle: RePEc:asu:wpaper:2133377
    as

    Download full text from publisher

    File URL: http://wpcarey.asu.edu/tools/mytools/pubs_admin/FILES/manuel-rust.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:asu:wpaper:2133377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Steve Salik (email available below). General contact details of provider: https://edirc.repec.org/data/deasuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.