IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0702029.html
   My bibliography  Save this paper

Correlation of coming limit price with order book in stock markets

Author

Listed:
  • Jun-ichi Maskawa

Abstract

We examine the correlation of the limit price with the order book, when a limit order comes. We analyzed the Rebuild Order Book of Stock Exchange Electronic Trading Service, which is the centralized order book market of London Stock Exchange. As a result, the limit price is broadly distributed around the best price according to a power-law, and it isn't randomly drawn from the distribution, but has a strong correlation with the size of cumulative unexecuted limit orders on the price. It was also found that the limit price, on the coarse-grained price scale, tends to gather around the price which has a large size of cumulative unexecuted limit orders.

Suggested Citation

  • Jun-ichi Maskawa, 2007. "Correlation of coming limit price with order book in stock markets," Papers physics/0702029, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0702029
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0702029
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim & Bekiros, Stelios, 2020. "Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.
    3. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    4. Ichiki, Shingo & Nishinari, Katsuhiro, 2015. "Simple stochastic order-book model of swarm behavior in continuous double auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 304-314.
    5. Shingo Ichiki & Katsuhiro Nishinari, 2014. "Simple Stochastic Order-Book Model of Swarm Behavior in Continuous Double Auction," Papers 1411.2215, arXiv.org.
    6. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    7. Gao-Feng Gu & Xiong Xiong & Wei Zhang & Yong-Jie Zhang & Wei-Xing Zhou, 2014. "Empirical properties of inter-cancellation durations in the Chinese stock market," Papers 1403.3478, arXiv.org.
    8. Yoshimura, Yushi & Okuda, Hiroshi & Chen, Yu, 2020. "A mathematical formulation of order cancellation for the agent-based modelling of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    9. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    10. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    11. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    2. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    3. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    4. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    5. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    6. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    7. Aït-Youcef, Camille & Joëts, Marc, 2024. "The role of index traders in the financialization of commodity markets: A behavioral finance approach," Energy Economics, Elsevier, vol. 136(C).
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    9. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    10. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    11. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    12. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    13. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    14. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    15. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    16. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    17. Damian Jelito & Marcin Pitera, 2018. "New fat-tail normality test based on conditional second moments with applications to finance," Papers 1811.05464, arXiv.org, revised Apr 2020.
    18. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    19. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    20. Zou, Yongjie & Li, Honggang, 2014. "Time spans between price maxima and price minima in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 303-309.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0702029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.