IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0606115.html
   My bibliography  Save this paper

Long-range memory model of trading activity and volatility

Author

Listed:
  • V. Gontis
  • B. Kaulakys

Abstract

Earlier we proposed the stochastic point process model, which reproduces a variety of self-affine time series exhibiting power spectral density S(f) scaling as power of the frequency f and derived a stochastic differential equation with the same long range memory properties. Here we present a stochastic differential equation as a dynamical model of the observed memory in the financial time series. The continuous stochastic process reproduces the statistical properties of the trading activity and serves as a background model for the modeling waiting time, return and volatility. Empirically observed statistical properties: exponents of the power-law probability distributions and power spectral density of the long-range memory financial variables are reproduced with the same values of few model parameters.

Suggested Citation

  • V. Gontis & B. Kaulakys, 2006. "Long-range memory model of trading activity and volatility," Papers physics/0606115, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0606115
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0606115
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.
    2. Gontis, V. & Kononovicius, A., 2020. "Bessel-like birth–death process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Gontis, V. & Kononovicius, A., 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 266-272.
    4. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    5. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    6. Vygintas Gontis & Aleksejus Kononovicius, 2019. "Bessel-like birth-death process," Papers 1904.13064, arXiv.org, revised Oct 2019.
    7. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
    8. Aleksejus Kononovicius & Vygintas Gontis & Valentas Daniunas, 2012. "Agent-based Versus Macroscopic Modeling of Competition and Business Processes in Economics and Finance," Papers 1202.3533, arXiv.org, revised Jun 2012.
    9. Vygintas Gontis & Aleksejus Kononovicius, 2017. "Spurious memory in non-equilibrium stochastic models of imitative behavior," Papers 1707.09801, arXiv.org.
    10. V. Gontis & A. Kononovicius, 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Papers 1701.01255, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    2. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    3. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    4. Marcel Brautigam & Michel Dacorogna & Marie Kratz, 2019. "Pro-Cyclicality of Traditional Risk Measurements: Quantifying and Highlighting Factors at its Source," Papers 1903.03969, arXiv.org, revised Dec 2019.
    5. Juan Carlos Ruilova & Pedro Alberto Morettin, 2020. "Parsimonious Heterogeneous ARCH Models for High Frequency Modeling," JRFM, MDPI, vol. 13(2), pages 1-19, February.
    6. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    7. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    8. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    9. Aviral Tiwari & Niyati Bhanja & Arif Dar & Faridul Islam, 2015. "Time–frequency relationship between share prices and exchange rates in India: Evidence from continuous wavelets," Empirical Economics, Springer, vol. 48(2), pages 699-714, March.
    10. Marc Simpson & Jose Moreno & Teofilo Ozuna, 2012. "The makings of an information leader: the intraday price discovery process for individual stocks in the DJIA," Review of Quantitative Finance and Accounting, Springer, vol. 38(3), pages 347-365, April.
    11. Bottazzi, G. & Sapio, S. & Secchi, A., 2005. "Some statistical investigations on the nature and dynamics of electricity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 54-61.
    12. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    13. Bertram, William K., 2005. "A threshold model for Australian Stock Exchange equities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 561-576.
    14. Bence Toth & Janos Kertesz, 2009. "The Epps effect revisited," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 793-802.
    15. Pasquariello, Paolo, 2007. "Informative trading or just costly noise? An analysis of Central Bank interventions," Journal of Financial Markets, Elsevier, vol. 10(2), pages 107-143, May.
    16. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    17. Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.
    18. Barbara Będowska-Sójka, 2018. "Is intraday data useful for forecasting VaR? The evidence from EUR/PLN exchange rate," Risk Management, Palgrave Macmillan, vol. 20(4), pages 326-346, November.
    19. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    20. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0606115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.