IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0702413.html
   My bibliography  Save this paper

Sensitivity analysis of utility-based prices and risk-tolerance wealth processes

Author

Listed:
  • Dmitry Kramkov
  • Mihai S^{{i}}rbu

Abstract

In the general framework of a semimartingale financial model and a utility function $U$ defined on the positive real line, we compute the first-order expansion of marginal utility-based prices with respect to a ``small'' number of random endowments. We show that this linear approximation has some important qualitative properties if and only if there is a risk-tolerance wealth process. In particular, they hold true in the following polar cases: \begin{tabular}@p97mm@ for any utility function $U$, if and only if the set of state price densities has a greatest element from the point of view of second-order stochastic dominance;for any financial model, if and only if $U$ is a power utility function ($U$ is an exponential utility function if it is defined on the whole real line). \end{tabular}

Suggested Citation

  • Dmitry Kramkov & Mihai S^{{i}}rbu, 2007. "Sensitivity analysis of utility-based prices and risk-tolerance wealth processes," Papers math/0702413, arXiv.org.
  • Handle: RePEc:arx:papers:math/0702413
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0702413
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    2. Dmitry Kramkov & Mihai S^{{i}}rbu, 2006. "On the two-times differentiability of the value functions in the problem of optimal investment in incomplete markets," Papers math/0610224, arXiv.org.
    3. Mark Rubinstein, 1976. "The Valuation of Uncertain Income Streams and the Pricing of Options," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 407-425, Autumn.
    4. Jan Kallsen, 2002. "Derivative pricing based on local utility maximization," Finance and Stochastics, Springer, vol. 6(1), pages 115-140.
    5. Henderson, Vicky & Hobson, David G., 2002. "Real options with constant relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 329-355, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Guasoni & Scott Robertson, 2012. "Portfolios and risk premia for the long run," Papers 1203.1399, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David German, 2010. "Overview of utility-based valuation," Papers 1003.5712, arXiv.org.
    2. Mostovyi, Oleksii, 2020. "Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4444-4469.
    3. Kramkov, D. & Sîrbu, M., 2007. "Asymptotic analysis of utility-based hedging strategies for small number of contingent claims," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1606-1620, November.
    4. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    5. Mark P. Owen & Gordan Žitković, 2009. "Optimal Investment With An Unbounded Random Endowment And Utility‐Based Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 129-159, January.
    6. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    7. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    8. Kallsen Jan & Rheinländer Thorsten, 2011. "Asymptotic utility-based pricing and hedging for exponential utility," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 17-36, March.
    9. Kramkov, Dmitry & Weston, Kim, 2016. "Muckenhoupt’s (Ap) condition and the existence of the optimal martingale measure," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2615-2633.
    10. Oleksii Mostovyi & Mihai S^irbu, 2017. "Sensitivity analysis of the utility maximization problem with respect to model perturbations," Papers 1705.08291, arXiv.org.
    11. Mark Owen & Gordan Zitkovic, 2007. "Optimal Investment with an Unbounded Random Endowment and Utility-Based Pricing," Papers 0706.0478, arXiv.org, revised Sep 2007.
    12. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    13. Siddiqi, Hammad, 2015. "Anchoring and Adjustment Heuristic: A Unified Explanation for Equity Puzzles," MPRA Paper 68729, University Library of Munich, Germany.
    14. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    15. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.
    16. Boes, M.J., 2006. "Index options : Pricing, implied densities and returns," Other publications TiSEM e9ed8a9f-2472-430a-b666-9, Tilburg University, School of Economics and Management.
    17. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    18. Song, Dandan & Wang, Huamao & Yang, Zhaojun, 2014. "Learning, pricing, timing and hedging of the option to invest for perpetual cash flows with idiosyncratic risk," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 1-11.
    19. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    20. Sunil S. Poshakwale & Pankaj Chandorkar, 2019. "The Impact of Aggregate and Disaggregate Consumption Shocks on the Equity Risk Premium in the United Kingdom," Annals of Economics and Finance, Society for AEF, vol. 20(2), pages 489-524, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0702413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.