IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0605062.html
   My bibliography  Save this paper

Coherent measurement of factor risks

Author

Listed:
  • Alexander S. Cherny
  • Dilip B. Madan

Abstract

We propose a new procedure for the risk measurement of large portfolios. It employs the following objects as the building blocks: - coherent risk measures introduced by Artzner, Delbaen, Eber, and Heath; - factor risk measures introduced in this paper, which assess the risks driven by particular factors like the price of oil, S&P500 index, or the credit spread; - risk contributions and factor risk contributions, which provide a coherent alternative to the sensitivity coefficients. We also propose two particular classes of coherent risk measures called Alpha V@R and Beta V@R, for which all the objects described above admit an extremely simple empirical estimation procedure. This procedure uses no model assumptions on the structure of the price evolution. Moreover, we consider the problem of the risk management on a firm's level. It is shown that if the risk limits are imposed on the risk contributions of the desks to the overall risk of the firm (rather than on their outstanding risks) and the desks are allowed to trade these limits within a firm, then the desks automatically find the globally optimal portfolio.

Suggested Citation

  • Alexander S. Cherny & Dilip B. Madan, 2006. "Coherent measurement of factor risks," Papers math/0605062, arXiv.org.
  • Handle: RePEc:arx:papers:math/0605062
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0605062
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    2. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karabey, Uǧur & Kleinow, Torsten & Cairns, Andrew J.G., 2014. "Factor risk quantification in annuity models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 34-45.
    2. Alexander Cherny & Raphael Douady & Stanislav Molchanov, 2010. "On measuring nonlinear risk with scarce observations," Finance and Stochastics, Springer, vol. 14(3), pages 375-395, September.
    3. R. Tyrrell Rockafellar & Stan Uryasev & Michael Zabarankin, 2008. "Risk Tuning with Generalized Linear Regression," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 712-729, August.
    4. Yuan, Hongmin & Jiang, Long & Tian, Dejian, 2020. "Representation theorems for WVaR with respect to a capacity," Statistics & Probability Letters, Elsevier, vol. 158(C).
    5. Laurent, Jean-Paul & Sestier, Michael & Thomas, Stéphane, 2016. "Trading book and credit risk: How fundamental is the Basel review?," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 211-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaledi, Baha-Eldin & Shaked, Moshe, 2010. "Stochastic comparisons of multivariate mixtures," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2486-2498, November.
    2. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    3. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    4. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    5. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    6. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    7. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    8. Tim J. Boonen, 2016. "Optimal Reinsurance with Heterogeneous Reference Probabilities," Risks, MDPI, vol. 4(3), pages 1-11, July.
    9. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    10. Young, Virginia R. & Zariphopoulou, Thaleia, 2000. "Computation of distorted probabilities for diffusion processes via stochastic control methods," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 1-18, August.
    11. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2023. "Optimal moral-hazard-free reinsurance under extended distortion premium principles," Papers 2304.08819, arXiv.org.
    12. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    13. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.
    14. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    15. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    16. Wang, Shaun S. & Young, Virginia R., 1998. "Ordering risks: Expected utility theory versus Yaari's dual theory of risk," Insurance: Mathematics and Economics, Elsevier, vol. 22(2), pages 145-161, June.
    17. De Waegenaere, Anja & Kast, Robert & Lapied, Andre, 2003. "Choquet pricing and equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 359-370, July.
    18. Erio Castagnoli & Fabio Maccheroni & Massimo Marinacci, 2004. "Choquet Insurance Pricing: A Caveat," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 481-485, July.
    19. Koster, Maurice & Boonen, Tim J., 2019. "Constrained stochastic cost allocation," Mathematical Social Sciences, Elsevier, vol. 101(C), pages 20-30.
    20. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0605062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.