IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0604311.html
   My bibliography  Save this paper

The Bismut-Elworthy-Li formula for jump-diffusions and applications to Monte Carlo pricing in finance

Author

Listed:
  • T. R. Cass
  • P. K. Friz

Abstract

We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and "payoff" functions depending on the process at multiple future times. In the spirit of Fournie et al [13] and Davis and Johansson [9] this can improve Monte Carlo numerics for stochastic volatility models with jumps. To this end one needs so-called Malliavin weights and we give explicit formulae valid in presence of jumps: (a) In a non-degenerate situation, the extended BEL formula represents possible Malliavin weights as Ito integrals with explicit integrands; (b) in a hypoelliptic setting we review work of Arnaudon and Thalmaier [1] and also find explicit weights, now involving the Malliavin covariance matrix, but still straight-forward to implement. (This is in contrast to recent work by Forster, Lutkebohmert and Teichmann where weights are constructed as anticipating Skorohod integrals.) We give some financial examples covered by (b) but note that most practical cases of poor Monte Carlo performance, Digital Cliquet contracts for instance, can be dealt with by the extended BEL formula and hence without any reliance on Malliavin calculus at all. We then discuss some of the approximations, often ignored in the literature, needed to justify the use of the Malliavin weights in the context of standard jump diffusion models. Finally, as all this is meant to improve numerics, we give some numerical results with focus on Cliquets under the Heston model with jumps.

Suggested Citation

  • T. R. Cass & P. K. Friz, 2006. "The Bismut-Elworthy-Li formula for jump-diffusions and applications to Monte Carlo pricing in finance," Papers math/0604311, arXiv.org, revised May 2007.
  • Handle: RePEc:arx:papers:math/0604311
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0604311
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    2. Eric Benhamou, 2002. "Smart Monte Carlo: various tricks using Malliavin calculus," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 329-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reiichiro Kawai, 2009. "Sensitivity Analysis And Density Estimation For The Hobson-Rogers Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 283-295.
    2. M. Kateregga & S. Mataramvura & D. Taylor & Xibin Zhang, 2017. "Bismut–Elworthy–Li formula for subordinated Brownian motion applied to hedging financial derivatives," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1384125-138, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tebaldi, Claudio, 2005. "Hedging using simulation: a least squares approach," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.
    2. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    3. Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
    4. Bakshi, Gurdip & Crosby, John & Gao, Xiaohui & Hansen, Jorge W., 2023. "Treasury option returns and models with unspanned risks," Journal of Financial Economics, Elsevier, vol. 150(3).
    5. Paul Bilokon & Sergei Kucherenko & Casey Williams, 2022. "Quasi-Monte Carlo methods for calculating derivatives sensitivities on the GPU," Papers 2209.11337, arXiv.org.
    6. Galai, Dan & Raviv, Alon & Wiener, Zvi, 2007. "Liquidation triggers and the valuation of equity and debt," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3604-3620, December.
    7. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    8. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Delta Hedging Under Two Price Distribution Assumptions By Likelihood Ratio," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 25-34.
    9. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    10. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Gradient Estimation Techniques For European Call Options," Accounting & Taxation, The Institute for Business and Finance Research, vol. 4(1), pages 75-81.
    11. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    12. Ron Kaniel & Stathis Tompaidis & Alexander Zemlianov, 2008. "Efficient Computation of Hedging Parameters for Discretely Exercisable Options," Operations Research, INFORMS, vol. 56(4), pages 811-826, August.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Patrik Karlsson, 2018. "Finite element based Monte Carlo simulation of options on Lévy driven assets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-23, March.
    15. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    16. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    17. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    18. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    19. Michael C. Fu, 2019. "Simulation-Based Algorithms for Markov Decision Processes: Monte Carlo Tree Search from AlphaGo to AlphaZero," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-25, December.
    20. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0604311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.