IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0503550.html
   My bibliography  Save this paper

On the super replication price of unbounded claims

Author

Listed:
  • Sara Biagini
  • Marco Frittelli

Abstract

In an incomplete market the price of a claim f in general cannot be uniquely identified by no arbitrage arguments. However, the ``classical'' super replication price is a sensible indicator of the (maximum selling) value of the claim. When f satisfies certain pointwise conditions (e.g., f is bounded from below), the super replication price is equal to sup_QE_Q[f], where Q varies on the whole set of pricing measures. Unfortunately, this price is often too high: a typical situation is here discussed in the examples. We thus define the less expensive weak super replication price and we relax the requirements on f by asking just for ``enough'' integrability conditions. By building up a proper duality theory, we show its economic meaning and its relation with the investor's preferences. Indeed, it turns out that the weak super replication price of f coincides with sup_{Q\in M_{\Phi}}E_Q[f], where M_{\Phi} is the class of pricing measures with finite generalized entropy (i.e., E[\Phi (\frac{dQ}{dP})]

Suggested Citation

  • Sara Biagini & Marco Frittelli, 2005. "On the super replication price of unbounded claims," Papers math/0503550, arXiv.org.
  • Handle: RePEc:arx:papers:math/0503550
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0503550
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    2. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    3. Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
    4. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    5. Tahir Choulli & Jun Deng & Junfeng Ma, 2012. "How Non-Arbitrage, Viability and Num\'eraire Portfolio are Related," Papers 1211.4598, arXiv.org, revised Jun 2014.
    6. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    7. Jos'e Manuel Corcuera, 2021. "The Golden Age of the Mathematical Finance," Papers 2102.06693, arXiv.org, revised Mar 2021.
    8. Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
    9. repec:dau:papers:123456789/5374 is not listed on IDEAS
    10. Luciano Campi, 2004. "Arbitrage and completeness in financial markets with given N-dimensional distributions," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(1), pages 57-80, August.
    11. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    12. Paolo Guasoni & Scott Robertson, 2012. "Portfolios and risk premia for the long run," Papers 1203.1399, arXiv.org.
    13. Paul McCloud, 2020. "Expectation and Price in Incomplete Markets," Papers 2006.16703, arXiv.org.
    14. Alexandre Carbonneau & Fr'ed'eric Godin, 2020. "Equal Risk Pricing of Derivatives with Deep Hedging," Papers 2002.08492, arXiv.org, revised Jun 2020.
    15. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    16. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    17. Choulli, Tahir & Stricker, Christophe, 2009. "Comparing the minimal Hellinger martingale measure of order q to the q-optimal martingale measure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1368-1385, April.
    18. Romuald Hervé Momeya & Manuel Morales, 2016. "On the Price of Risk of the Underlying Markov Chain in a Regime-Switching Exponential Lévy Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 107-135, March.
    19. Farzad Fard & Tak Siu, 2013. "Pricing and managing risks of European-style options in a Markovian regime-switching binomial model," Annals of Finance, Springer, vol. 9(3), pages 421-438, August.
    20. Michael Mania & Revaz Tevzadze, 2008. "Backward Stochastic PDEs Related to the Utility Maximization Problem," ICER Working Papers - Applied Mathematics Series 07-2008, ICER - International Centre for Economic Research.
    21. Henryk Gzyl, 2000. "Maxentropic construction of risk neutral measures: discrete market models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 229-239.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0503550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.