IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v03y2000i01ns0219024900000073.html
   My bibliography  Save this article

Financial Modeling And Option Theory With The Truncated Levy Process

Author

Listed:
  • ANDREW MATACZ

    (School of Mathematics, University of Sydney, Australia 2006, Australia)

Abstract

In recent studies the truncated Levy process (TLP) has been shown to be very promising for the modeling of financial dynamics. In contrast to the Levy process, the TLP has finite moments and can account for both the previously observed excess kurtosis at short timescales, along with the slow convergence to Gaussian at longer timescales. In this paper I further test the truncated Levy paradigm using high frequency data from the Australian All Ordinaries share market index. I then consider an optimal option hedging strategy which is appropriate for the early Levy dominated regime. This is compared with the usual delta hedging approach and found to differ significantly.

Suggested Citation

  • Andrew Matacz, 2000. "Financial Modeling And Option Theory With The Truncated Levy Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 143-160.
  • Handle: RePEc:wsi:ijtafx:v:03:y:2000:i:01:n:s0219024900000073
    DOI: 10.1142/S0219024900000073
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024900000073
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024900000073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:03:y:2000:i:01:n:s0219024900000073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.