IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.11432.html
   My bibliography  Save this paper

Maximal Inequalities for Separately Exchangeable Empirical Processes

Author

Listed:
  • Harold D. Chiang

Abstract

This paper derives new maximal inequalities for empirical processes associated with separately exchangeable random arrays. For fixed index dimension $K\ge 1$, we establish a global maximal inequality bounding the $q$-th moment ($q\in[1,\infty)$) of the supremum of these processes. We also obtain a refined local maximal inequality controlling the first absolute moment of the supremum. Both results are proved for a general pointwise measurable function class. Our approach uses a new technique partitioning the index set into transversal groups, decoupling dependencies and enabling more sophisticated higher moment bounds.

Suggested Citation

  • Harold D. Chiang, 2025. "Maximal Inequalities for Separately Exchangeable Empirical Processes," Papers 2502.11432, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.11432
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.11432
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2023. "An Adversarial Approach to Structural Estimation," Econometrica, Econometric Society, vol. 91(6), pages 2041-2063, November.
    2. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    3. A. Belloni & V. Chernozhukov & K. Kato, 2015. "Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems," Biometrika, Biometrika Trust, vol. 102(1), pages 77-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    3. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    4. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024. "Bootstrap Inference for Panel Data Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
    6. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    7. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    8. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    9. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    10. Yiren Wang & Liangjun Su & Yichong Zhang, 2022. "Low-rank Panel Quantile Regression: Estimation and Inference," Papers 2210.11062, arXiv.org.
    11. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    13. Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
    14. Yu, Lu & Gu, Jiaying & Volgushev, Stanislav, 2024. "Spectral clustering with variance information for group structure estimation in panel data," Journal of Econometrics, Elsevier, vol. 241(1).
    15. Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2022. "Debiased machine learning of global and local parameters using regularized Riesz representers [Semiparametric instrumental variable estimation of treatment response models]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 576-601.
    16. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    17. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," NBER Working Papers 33117, National Bureau of Economic Research, Inc.
    18. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    19. Simon Lloyd & Ed Manuel & Konstantin Panchev, 2024. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(1), pages 335-392, March.
    20. Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2022. "Multiway Cluster Robust Double/Debiased Machine Learning," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1046-1056, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.11432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.