IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v92y2020icp104-114.html
   My bibliography  Save this article

Optimal insurance with belief heterogeneity and incentive compatibility

Author

Listed:
  • Chi, Yichun
  • Zhuang, Sheng Chao

Abstract

People may evaluate risk differently in the insurance market. Motivated by this, we examine an optimal insurance problem allowing the insured and the insurer to have heterogeneous beliefs about loss distribution. To reduce ex post moral hazard, we follow Huberman et al. (1983) to assume that alternative insurance contracts satisfy the principle of indemnity and the incentive-compatible constraint. Under the assumption that the insurance premium is calculated by the expected value principle, we establish a necessary and sufficient condition for an optimal insurance solution and provide a practical scheme to improve any suboptimal insurance strategy under an arbitrary form of belief heterogeneity. By virtue of this condition, we explore qualitative properties of optimal solutions, and derive optimal insurance contracts explicitly for some interesting forms of belief heterogeneity. As a byproduct of this investigation, we find that Theorem 3.6 of Young (1999) is not completely true.

Suggested Citation

  • Chi, Yichun & Zhuang, Sheng Chao, 2020. "Optimal insurance with belief heterogeneity and incentive compatibility," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 104-114.
  • Handle: RePEc:eee:insuma:v:92:y:2020:i:c:p:104-114
    DOI: 10.1016/j.insmatheco.2020.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720300330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    2. Kimball, Miles S, 1990. "Precautionary Saving in the Small and in the Large," Econometrica, Econometric Society, vol. 58(1), pages 53-73, January.
    3. Chi, Yichun, 2019. "On The Optimality Of A Straight Deductible Under Belief Heterogeneity," ASTIN Bulletin, Cambridge University Press, vol. 49(1), pages 243-262, January.
    4. Chi, Yichun & Lin, X. Sheldon, 2014. "Optimal Reinsurance With Limited Ceded Risk: A Stochastic Dominance Approach," ASTIN Bulletin, Cambridge University Press, vol. 44(1), pages 103-126, January.
    5. Carole Bernard & Xuedong He & Jia-An Yan & Xun Yu Zhou, 2015. "Optimal Insurance Design Under Rank-Dependent Expected Utility," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 154-186, January.
    6. Charles N. Noussair & Stefan T. Trautmann & Gijs van de Kuilen, 2014. "Higher Order Risk Attitudes, Demographics, and Financial Decisions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(1), pages 325-355.
    7. Carlier, G. & Dana, R.-A., 2005. "Rearrangement inequalities in non-convex insurance models," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 483-503, August.
    8. Massimiliano Amarante & Mario Ghossoub, 2016. "Optimal Insurance for a Minimal Expected Retention: The Case of an Ambiguity-Seeking Insurer," Risks, MDPI, vol. 4(1), pages 1-27, March.
    9. repec:dau:papers:123456789/5389 is not listed on IDEAS
    10. Georges Dionne (ed.), 2013. "Handbook of Insurance," Springer Books, Springer, edition 2, number 978-1-4614-0155-1, June.
    11. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    12. Jiang, Wenjun & Ren, Jiandong & Yang, Chen & Hong, Hanping, 2019. "On optimal reinsurance treaties in cooperative game under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 173-184.
    13. Guillaume Carlier & Rose-Anne Dana, 2003. "Pareto efficient insurance contracts when the insurer's cost function is discontinuous," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 871-893, June.
    14. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    15. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    16. Zhuang, Sheng Chao & Weng, Chengguo & Tan, Ken Seng & Assa, Hirbod, 2016. "Marginal Indemnification Function formulation for optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 65-76.
    17. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance with belief heterogeneity," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 79-91.
    18. Tim J. Boonen, 2016. "Optimal Reinsurance with Heterogeneous Reference Probabilities," Risks, MDPI, vol. 4(3), pages 1-11, July.
    19. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    20. Mario Ghossoub, 2016. "Optimal Insurance with Heterogeneous Beliefs and Disagreement about Zero-Probability Events," Risks, MDPI, vol. 4(3), pages 1-28, August.
    21. repec:dau:papers:123456789/5394 is not listed on IDEAS
    22. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    23. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    24. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
    25. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boonen, Tim J. & Jiang, Wenjun, 2022. "Bilateral risk sharing in a comonotone market with rank-dependent utilities," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 361-378.
    2. Jiang, Wenjun & Hong, Hanping & Ren, Jiandong, 2021. "Pareto-optimal reinsurance policies with maximal synergy," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 185-198.
    3. Xiaoqing Liang & Ruodu Wang & Virginia Young, 2021. "Optimal Insurance to Maximize RDEU Under a Distortion-Deviation Premium Principle," Papers 2107.02656, arXiv.org, revised Feb 2022.
    4. Liang, Xiaoqing & Jiang, Wenjun & Zhang, Yiying, 2023. "Optimal insurance design under mean-variance preference with narrow framing," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 59-79.
    5. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2023. "Optimal moral-hazard-free reinsurance under extended distortion premium principles," Papers 2304.08819, arXiv.org.
    6. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    7. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2020. "Optimal Insurance under Maxmin Expected Utility," Papers 2010.07383, arXiv.org.
    2. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    3. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.
    4. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    5. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.
    6. Jiang, Wenjun & Hong, Hanping & Ren, Jiandong, 2021. "Pareto-optimal reinsurance policies with maximal synergy," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 185-198.
    7. Asimit, Alexandru V. & Cheung, Ka Chun & Chong, Wing Fung & Hu, Junlei, 2020. "Pareto-optimal insurance contracts with premium budget and minimum charge constraints," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 17-27.
    8. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    9. Yichun Chi & Xun Yu Zhou & Sheng Chao Zhuang, 2020. "Variance Contracts," Papers 2008.07103, arXiv.org.
    10. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance with belief heterogeneity," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 79-91.
    11. Chi, Yichun & Zhou, Xun Yu & Zhuang, Sheng Chao, 2024. "Variance insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 62-82.
    12. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    13. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    14. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    15. Boonen, Tim J. & Jiang, Wenjun, 2024. "Robust insurance design with distortion risk measures," European Journal of Operational Research, Elsevier, vol. 316(2), pages 694-706.
    16. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    17. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    18. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    19. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    20. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.

    More about this item

    Keywords

    Belief heterogeneity; Incentive compatibility; Monotone likelihood ratio order; Optimal insurance design; Partial insurance over a layer;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:92:y:2020:i:c:p:104-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.