IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.05186.html
   My bibliography  Save this paper

Multimodal Stock Price Prediction

Author

Listed:
  • Furkan Karadac{s}
  • Bahaeddin Eravc{i}
  • Ahmet Murat Ozbayou{g}lu

Abstract

In an era where financial markets are heavily influenced by many static and dynamic factors, it has become increasingly critical to carefully integrate diverse data sources with machine learning for accurate stock price prediction. This paper explores a multimodal machine learning approach for stock price prediction by combining data from diverse sources, including traditional financial metrics, tweets, and news articles. We capture real-time market dynamics and investor mood through sentiment analysis on these textual data using both ChatGPT-4o and FinBERT models. We look at how these integrated data streams augment predictions made with a standard Long Short-Term Memory (LSTM model) to illustrate the extent of performance gains. Our study's results indicate that incorporating the mentioned data sources considerably increases the forecast effectiveness of the reference model by up to 5%. We also provide insights into the individual and combined predictive capacities of these modalities, highlighting the substantial impact of incorporating sentiment analysis from tweets and news articles. This research offers a systematic and effective framework for applying multimodal data analytics techniques in financial time series forecasting that provides a new view for investors to leverage data for decision-making.

Suggested Citation

  • Furkan Karadac{s} & Bahaeddin Eravc{i} & Ahmet Murat Ozbayou{g}lu, 2025. "Multimodal Stock Price Prediction," Papers 2502.05186, arXiv.org.
  • Handle: RePEc:arx:papers:2502.05186
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.05186
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    2. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Arcangelis, Anna Maria & Rotundo, Giulia, 2021. "Herding in mutual funds: A complex network approach," Journal of Business Research, Elsevier, vol. 129(C), pages 679-686.
    2. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    3. Peterson K. Ozili, 2017. "Earnings management in interconnected networks: a perspective," Journal of Economic and Administrative Sciences, Emerald Group Publishing Limited, vol. 33(2), pages 150-163, November.
    4. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    5. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    6. Marton Gosztonyi, 2021. "A Snapshot of the Ownership Network of the Budapest Stock Exchange," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 20(3), pages 31-58.
    7. Lillo, Felipe & Valdés, Rodrigo, 2016. "Dynamics of financial markets and transaction costs: A graph-based study," Research in International Business and Finance, Elsevier, vol. 38(C), pages 455-465.
    8. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    9. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    10. Neto, José de Paula Neves & Figueiredo, Daniel Ratton, 2023. "Ranking influential and influenced stocks over time using transfer entropy networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    12. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    13. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    14. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen & Nadarajah, Saralees, 2020. "Bias reduction in the population size estimation of large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    15. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    16. Elisa Letizia & Fabrizio Lillo, 2017. "Corporate payments networks and credit risk rating," Papers 1711.07677, arXiv.org, revised Sep 2018.
    17. Nie, Chun-Xiao, 2017. "Correlation dimension of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 632-639.
    18. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    19. Zugang Liu, 2013. "The co-evolution of integrated corporate financial networks and supply chain networks with insolvency risk," Computational Management Science, Springer, vol. 10(2), pages 253-275, June.
    20. Anna Maria D’Arcangelis & Arianna Pierdomenico & Giulia Rotundo, 2024. "Impact of Brexit on STOXX Europe 600 Constituents: A Complex Network Analysis," Stats, MDPI, vol. 7(3), pages 1-20, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.05186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.