Panel Data Estimation and Inference: Homogeneity versus Heterogeneity
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
- Chen, Jia & Gao, Jiti & Li, Degui, 2012.
"Semiparametric trending panel data models with cross-sectional dependence,"
Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
- Jia Chen & Jiti Gao & Degui Li, 2010. "Semiparametric Trending Panel Data Models with Cross-Sectional Dependence," School of Economics and Public Policy Working Papers 2010-10, University of Adelaide, School of Economics and Public Policy.
- Jia Chen & Jiti Gao & Degui Li, 2011. "Semiparametric Trending Panel Data Models with Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 15/11, Monash University, Department of Econometrics and Business Statistics.
- Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
- Stefano Giglio & Dacheng Xiu, 2021. "Asset Pricing with Omitted Factors," Journal of Political Economy, University of Chicago Press, vol. 129(7), pages 1947-1990.
- Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
- Huang, Wenxin & Jin, Sainan & Phillips, Peter C.B. & Su, Liangjun, 2021.
"Nonstationary panel models with latent group structures and cross-section dependence,"
Journal of Econometrics, Elsevier, vol. 221(1), pages 198-222.
- Huang, Wenxin & Jin, Sainan & Phillips, Peter C.B. & Su, Liangjun, 2020. "Nonstationary Panel Models with Latent Group Structures and Cross-Section Dependence," Economics and Statistics Working Papers 7-2020, Singapore Management University, School of Economics.
- Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hsiao,Cheng, 2022. "Analysis of Panel Data," Cambridge Books, Cambridge University Press, number 9781009060752, January.
- Hsiao,Cheng, 2022. "Analysis of Panel Data," Cambridge Books, Cambridge University Press, number 9781316512104, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
- Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017.
"A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
- Guohua Feng & Jiti Gao & Bin Peng & Xiaohui Zhang, 2015. "A Varying-Coefficient Panel Data Model with Fixed Effects: Theory and an Application to U.S. Commercial Banks," Monash Econometrics and Business Statistics Working Papers 9/15, Monash University, Department of Econometrics and Business Statistics.
- Cheng, Tingting & Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2024.
"GMM estimation for high-dimensional panel data models,"
Journal of Econometrics, Elsevier, vol. 244(1).
- Cheng, T. & Dong, C. & Gao, J. & Linton, O., 2022. "GMM Estimation for High-Dimensional Panel Data Models," Cambridge Working Papers in Economics 2245, Faculty of Economics, University of Cambridge.
- Tingting Cheng & Chaohua Dong & Jiti Gao & Oliver Linton, 2022. "GMM Estimation for High-Dimensional Panel Data Models," Monash Econometrics and Business Statistics Working Papers 11/22, Monash University, Department of Econometrics and Business Statistics.
- Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015.
"A semiparametric model for heterogeneous panel data with fixed effects,"
Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
- Lena Boneva (Körber) & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers CWP02/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lena Boneva (Körber) & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers 02/13, Institute for Fiscal Studies.
- Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
- Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
- M. Hashem Pesaran & Andreas Pick & Allan Timmermann, 2022.
"Forecasting With Panel Data: Estimation Uncertainty Versus Parameter Heterogeneity,"
CESifo Working Paper Series
9690, CESifo.
- Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2022. "Forecasting with panel data: estimation uncertainty versus parameter heterogeneity," CEPR Discussion Papers 17123, C.E.P.R. Discussion Papers.
- M. Hashem Pesaran & Andreas Pick & Allan Timmermann, 2024. "Forecasting with panel data: Estimation uncertainty versus parameter heterogeneity," Papers 2404.11198, arXiv.org.
- Pesaran, M. H. & Pick, A. & Timmermann, A., 2022. "Forecasting with panel data: estimation uncertainty versus parameter heterogeneity," Cambridge Working Papers in Economics 2219, Faculty of Economics, University of Cambridge.
- Moses Tunde Oyerinde & Folake Feyisayo Olowokudejo & Musa Adebayo Obalola, 2024. "Assets and Liabilities Management: A Determinant of Financial Performance of Pension Funds Administrators (PFAs)," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 46-54.
- Simona-Vasilica Oprea & Irina Alexandra Georgescu & Adela Bâra, 2024. "Charting the BRIC countries’ connection of political stability, economic growth, demographics, renewables and CO2 emissions," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-35, October.
- Ujkani Xheneta & Gara Atdhetar, 2023. "Determinants of the Inflation Rate: Evidence from Panel Data," Economics, Sciendo, vol. 11(2), pages 169-182, December.
- Gupta, Abhimanyu, 2018.
"Autoregressive spatial spectral estimates,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
- Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
- Marcos Sanso-Navarro & Maria Vera-Cabello, 2015. "The effects of knowledge and innovation on regional growth: Nonparametric evidence," ERSA conference papers ersa15p949, European Regional Science Association.
- Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
- Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
- Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
- Lin Wang & Yugang He & Renhong Wu, 2024. "Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability," Energies, MDPI, vol. 17(4), pages 1-25, February.
- Jason Brown & Dayton Lambert, 2024. "Creative Destruction and the Reallocation of Capital in Rural and Urban Areas," Research Working Paper RWP 24-11, Federal Reserve Bank of Kansas City.
- Gupta, Abhimanyu, 2023.
"Efficient closed-form estimation of large spatial autoregressions,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
- Abhimanyu Gupta, 2020. "Efficient closed-form estimation of large spatial autoregressions," Papers 2008.12395, arXiv.org, revised May 2021.
- Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
- Peng, Bin, 2016. "Inference on modelling cross-sectional dependence for a varying-coefficient model," Economics Letters, Elsevier, vol. 145(C), pages 1-5.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-02-24 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.03019. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.