IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.03019.html
   My bibliography  Save this paper

Panel Data Estimation and Inference: Homogeneity versus Heterogeneity

Author

Listed:
  • Jiti Gao
  • Fei Liu
  • Bin Peng
  • Yayi Yan

Abstract

In this paper, we define an underlying data generating process that allows for different magnitudes of cross-sectional dependence, along with time series autocorrelation. This is achieved via high-dimensional moving average processes of infinite order (HDMA($\infty$)). Our setup and investigation integrates and enhances homogenous and heterogeneous panel data estimation and testing in a unified way. To study HDMA($\infty$), we extend the Beveridge-Nelson decomposition to a high-dimensional time series setting, and derive a complete toolkit set. We exam homogeneity versus heterogeneity using Gaussian approximation, a prevalent technique for establishing uniform inference. For post-testing inference, we derive central limit theorems through Edgeworth expansions for both homogenous and heterogeneous settings. Additionally, we showcase the practical relevance of the established asymptotic properties by revisiting the common correlated effects (CCE) estimators, and a classic nonstationary panel data process. Finally, we verify our theoretical findings via extensive numerical studies using both simulated and real datasets.

Suggested Citation

  • Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2025. "Panel Data Estimation and Inference: Homogeneity versus Heterogeneity," Papers 2502.03019, arXiv.org.
  • Handle: RePEc:arx:papers:2502.03019
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.03019
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.03019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.