IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p1174-1190.html
   My bibliography  Save this article

Toward Computerized Efficient Estimation in Infinite-Dimensional Models

Author

Listed:
  • Marco Carone
  • Alexander R. Luedtke
  • Mark J. van der Laan

Abstract

Despite the risk of misspecification they are tied to, parametric models continue to be used in statistical practice because they are simple and convenient to use. In particular, efficient estimation procedures in parametric models are easy to describe and implement. Unfortunately, the same cannot be said of semiparametric and nonparametric models. While the latter often reflect the level of available scientific knowledge more appropriately, performing efficient inference in these models is generally challenging. The efficient influence function is a key analytic object from which the construction of asymptotically efficient estimators can potentially be streamlined. However, the theoretical derivation of the efficient influence function requires specialized knowledge and is often a difficult task, even for experts. In this article, we present a novel representation of the efficient influence function and describe a numerical procedure for approximating its evaluation. The approach generalizes the nonparametric procedures of Frangakis et al. and Luedtke, Carone, and van der Laan to arbitrary models. We present theoretical results to support our proposal and illustrate the method in the context of several semiparametric problems. The proposed approach is an important step toward automating efficient estimation in general statistical models, thereby rendering more accessible the use of realistic models in statistical analyses. Supplementary materials for this article are available online.

Suggested Citation

  • Marco Carone & Alexander R. Luedtke & Mark J. van der Laan, 2019. "Toward Computerized Efficient Estimation in Infinite-Dimensional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1174-1190, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1174-1190
    DOI: 10.1080/01621459.2018.1482752
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1482752
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1482752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests," Papers 2110.03031, arXiv.org, revised Jun 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1174-1190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.