IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.04607.html
   My bibliography  Save this paper

Monthly GDP Growth Estimates for the U.S. States

Author

Listed:
  • Gary Koop
  • Stuart McIntyre
  • James Mitchell
  • Aristeidis Raftapostolos

Abstract

This paper develops a mixed frequency vector autoregressive (MF-VAR) model to produce nowcasts and historical estimates of monthly real state-level GDP for the 50 U.S. states, plus Washington DC, from 1964 through the present day. The MF-VAR model incorporates state and U.S. data at the monthly, quarterly, and annual frequencies. Temporal and cross-sectional constraints are imposed to ensure that the monthly state-level estimates are consistent with official estimates of quarterly GDP at the U.S. and state-levels. We illustrate the utility of the historical estimates in better understanding state business cycles and cross-state dependencies. We show how the model produces accurate nowcasts of state GDP three months ahead of the BEA's quarterly estimates, after conditioning on the latest estimates of U.S. GDP.

Suggested Citation

  • Gary Koop & Stuart McIntyre & James Mitchell & Aristeidis Raftapostolos, 2025. "Monthly GDP Growth Estimates for the U.S. States," Papers 2501.04607, arXiv.org.
  • Handle: RePEc:arx:papers:2501.04607
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.04607
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Del Negro, Marco, 2002. "Asymmetric shocks among U.S. states," Journal of International Economics, Elsevier, vol. 56(2), pages 273-297, March.
    3. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    4. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    5. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonello D’Agostino & Domenico Giannone & Michele Lenza & Michele Modugno, 2016. "Nowcasting Business Cycles: A Bayesian Approach to Dynamic Heterogeneous Factor Models," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 569-594, Emerald Group Publishing Limited.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    3. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    4. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "Constructing Fan Charts from the Ragged Edge of SPF Forecasts," Working Papers 22-36, Federal Reserve Bank of Cleveland.
    5. Hauber, Philipp, 2022. "Real-time nowcasting with sparse factor models," EconStor Preprints 251551, ZBW - Leibniz Information Centre for Economics.
    6. Sebastian Ankargren & Måns Unosson & Yukai Yang, 2018. "A mixed-frequency Bayesian vector autoregression with a steady-state prior," CREATES Research Papers 2018-32, Department of Economics and Business Economics, Aarhus University.
    7. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
    8. Ademmer, Martin & Boysen-Hogrefe, Jens & Fiedler, Salomon & Groll, Dominik & Hauber, Philipp & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina, 2018. "Deutsche Konjunktur im Frühjahr 2018 - Deutsche Wirtschaft näher am Limit [German Economy Spring 2018 - German economy closer to its limit]," Kieler Konjunkturberichte 41, Kiel Institute for the World Economy (IfW Kiel).
    9. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," Working Papers halshs-02443364, HAL.
    10. Hasenzagl, Thomas & Pellegrino, Filippo & Reichlin, Lucrezia & Ricco, Giovanni, 2022. "Monitoring the Economy in Real Time: Trends and Gaps in Real Activity and Prices," CEPR Discussion Papers 17111, C.E.P.R. Discussion Papers.
    11. Yasutomo Murasawa, 2016. "The Beveridge–Nelson decomposition of mixed-frequency series," Empirical Economics, Springer, vol. 51(4), pages 1415-1441, December.
    12. Eraslan, Sercan & Reif, Magnus, 2023. "A latent weekly GDP indicator for Germany," Technical Papers 08/2023, Deutsche Bundesbank.
    13. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    14. Yoshihiro Ohtsuka, 2018. "Large Shocks and the Business Cycle: The Effect of Outlier Adjustments," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 143-178, April.
    15. Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
    16. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
    17. Martina Hengge & Seton Leonard, 2017. "Factor Models for Non-Stationary Series: Estimates of Monthly U.S. GDP," IHEID Working Papers 13-2017, Economics Section, The Graduate Institute of International Studies.
    18. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    19. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    20. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.04607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.