IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i3p937-953.html
   My bibliography  Save this article

A Huff-like location model with quality adjustment and/or closing of existing facilities

Author

Listed:
  • G.-Tóth, Boglárka
  • Anton-Sanchez, Laura
  • Fernández, José

Abstract

The problem of an expanding chain in a given area is considered. It may locate a new facility, vary the quality of its existing facilities, close some of them, or a combination of all these possibilities, whatever is the best to maximize its profit, given a budget for the expansion. A new competitive location and design model is proposed that allows all these possibilities. The resulting model is a difficult to solve MINLP problem. A branch-and-bound method based on interval analysis is proposed to cope with it. The method can solve medium-size problems in a reasonable amount of CPU time. An ad-hoc heuristic and a hybrid method that usually find a near-optimal solution in a fraction of time of the exact method are also proposed. Some computational studies are presented to show the performance of the algorithms.

Suggested Citation

  • G.-Tóth, Boglárka & Anton-Sanchez, Laura & Fernández, José, 2024. "A Huff-like location model with quality adjustment and/or closing of existing facilities," European Journal of Operational Research, Elsevier, vol. 313(3), pages 937-953.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:937-953
    DOI: 10.1016/j.ejor.2023.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isabel Correia & M. Captivo, 2003. "A Lagrangean Heuristic for a Modular Capacitated Location Problem," Annals of Operations Research, Springer, vol. 122(1), pages 141-161, September.
    2. Saidani, Nasreddine & Chu, Feng & Chen, Haoxun, 2012. "Competitive facility location and design with reactions of competitors already in the market," European Journal of Operational Research, Elsevier, vol. 219(1), pages 9-17.
    3. T Drezner & Z Drezner & P Kalczynski, 2012. "Strategic competitive location: improving existing and establishing new facilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(12), pages 1720-1730, December.
    4. Plastria, Frank, 2001. "Static competitive facility location: An overview of optimisation approaches," European Journal of Operational Research, Elsevier, vol. 129(3), pages 461-470, March.
    5. H. A. Eiselt & Vladimir Marianov & Tammy Drezner, 2015. "Competitive Location Models," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 365-398, Springer.
    6. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    7. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2011. "Parallel algorithms for continuous multifacility competitive location problems," Journal of Global Optimization, Springer, vol. 50(4), pages 557-573, August.
    8. Mai, Tien & Lodi, Andrea, 2020. "A multicut outer-approximation approach for competitive facility location under random utilities," European Journal of Operational Research, Elsevier, vol. 284(3), pages 874-881.
    9. Aros-Vera, Felipe & Marianov, Vladimir & Mitchell, John E., 2013. "p-Hub approach for the optimal park-and-ride facility location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 277-285.
    10. J. Redondo & A. Arrondo & J. Fernández & I. García & P. Ortigosa, 2013. "A two-level evolutionary algorithm for solving the facility location and design (1|1)-centroid problem on the plane with variable demand," Journal of Global Optimization, Springer, vol. 56(3), pages 983-1005, July.
    11. Ljubić, Ivana & Moreno, Eduardo, 2018. "Outer approximation and submodular cuts for maximum capture facility location problems with random utilities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 46-56.
    12. Haase, Knut & Müller, Sven, 2014. "A comparison of linear reformulations for multinomial logit choice probabilities in facility location models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 689-691.
    13. Fernandez, Jose & Pelegri'n, Blas & Plastria, Frank & Toth, Boglarka, 2007. "Solving a Huff-like competitive location and design model for profit maximization in the plane," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1274-1287, June.
    14. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    15. Masao Nakanishi & Lee G. Cooper, 1982. "Technical Note—Simplified Estimation Procedures for MCI Models," Marketing Science, INFORMS, vol. 1(3), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    2. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin, 2023. "The follower competitive facility location problem under the nested logit choice rule," European Journal of Operational Research, Elsevier, vol. 310(2), pages 834-846.
    3. Lin, Yun Hui & Tian, Qingyun, 2021. "Branch-and-cut approach based on generalized benders decomposition for facility location with limited choice rule," European Journal of Operational Research, Elsevier, vol. 293(1), pages 109-119.
    4. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    5. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin & Eiselt, H.A., 2023. "Store location with multipurpose shopping trips and a new random utility customers’ choice model," European Journal of Operational Research, Elsevier, vol. 305(2), pages 708-721.
    6. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    7. Ralf Krohn & Sven Müller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 59-87, March.
    8. Mai, Tien & Lodi, Andrea, 2020. "A multicut outer-approximation approach for competitive facility location under random utilities," European Journal of Operational Research, Elsevier, vol. 284(3), pages 874-881.
    9. Fernández, José & Hendrix, Eligius M.T., 2013. "Recent insights in Huff-like competitive facility location and design," European Journal of Operational Research, Elsevier, vol. 227(3), pages 581-584.
    10. Kitthamkesorn, Songyot & Chen, Anthony & Ryu, Seungkyu & Opasanon, Sathaporn, 2024. "Maximum capture problem based on paired combinatorial weibit model to determine park-and-ride facility locations," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    11. Steven Lamontagne & Margarida Carvalho & Emma Frejinger & Bernard Gendron & Miguel F. Anjos & Ribal Atallah, 2023. "Optimising Electric Vehicle Charging Station Placement Using Advanced Discrete Choice Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1195-1213, September.
    12. Ngan Ha Duong & Tien Thanh Dam & Thuy Anh Ta & Tien Mai, 2022. "Joint Location and Cost Planning in Maximum Capture Facility Location under Multiplicative Random Utility Maximization," Papers 2205.07345, arXiv.org, revised Feb 2023.
    13. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    14. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    15. Ljubić, Ivana & Moreno, Eduardo, 2018. "Outer approximation and submodular cuts for maximum capture facility location problems with random utilities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 46-56.
    16. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    17. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    18. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    19. Juan Carlos Espinoza Garcia & Laurent Alfandari, 2018. "Robust location of new housing developments using a choice model," Annals of Operations Research, Springer, vol. 271(2), pages 527-550, December.
    20. Mejía, Gonzalo & Aránguiz, Raúl & Espejo-Díaz, Julián Alberto & Granados-Rivera, Daniela & Mejía-Argueta, Christopher, 2023. "Can street markets be a sustainable strategy to mitigate food insecurity in emerging countries? Insights from a competitive facility location model," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:937-953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.