IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.12522.html
   My bibliography  Save this paper

Canonical insurance models: stochastic equations and comparison theorems

Author

Listed:
  • Marcus C. Christiansen
  • Christian Furrer

Abstract

Thiele's differential equation explains the change in prospective reserve and plays a fundamental role in safe-side calculations and other types of actuarial model comparisons. This paper presents a `model lean' version of Thiele's equation with the novel feature that it supports any canonical insurance model, irrespective of the model's intertemporal dependence structure. The basis for this is a canonical and path-wise model construction that simultaneously handles discrete and absolutely continuous modeling regimes. Comparison theorems for differing canonical insurance models follow directly from the resulting stochastic backward equations. The elegance with which these comparison theorems handle non-equivalence of probability measures is one of their major advantages over previous results.

Suggested Citation

  • Marcus C. Christiansen & Christian Furrer, 2024. "Canonical insurance models: stochastic equations and comparison theorems," Papers 2411.12522, arXiv.org.
  • Handle: RePEc:arx:papers:2411.12522
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.12522
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Furrer, 2022. "Scaled insurance cash flows: representation and computation via change of measure techniques," Finance and Stochastics, Springer, vol. 26(2), pages 359-382, April.
    2. Ramlau-Hansen, Henrik, 1988. "The emergence of profit in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 7(4), pages 225-236, December.
    3. Marcus C. Christiansen & Michel M. Denuit & Jan Dhaene, 2014. "Reserve-Dependent Benefits and Costs in Life and Health Insurance Contracts," Tinbergen Institute Discussion Papers 14-117/IV/DSF80, Tinbergen Institute.
    4. Marcus C. Christiansen & Christian Furrer, 2020. "Dynamics of state-wise prospective reserves in the presence of non-monotone information," Papers 2003.02173, arXiv.org, revised Jan 2021.
    5. Ahmad, Jamaal & Bladt, Mogens & Furrer, Christian, 2023. "Aggregate Markov models in life insurance: Properties and valuation," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 50-69.
    6. Christiansen, Marcus C. & Djehiche, Boualem, 2020. "Nonlinear reserving and multiple contract modifications in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 187-195.
    7. Andreas Niemeyer, 2015. "Safety Margins for Systematic Biometric and Financial Risk in a Semi-Markov Life Insurance Framework," Risks, MDPI, vol. 3(1), pages 1-26, January.
    8. Nießl, Alexandra & Allignol, Arthur & Beyersmann, Jan & Mueller, Carina, 2023. "Statistical inference for state occupation and transition probabilities in non-Markov multi-state models subject to both random left-truncation and right-censoring," Econometrics and Statistics, Elsevier, vol. 25(C), pages 110-124.
    9. Linnemann, Per, 1993. "On the application of Thiele's differential equation in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 13(1), pages 63-74, September.
    10. Milbrodt, Hartmut & Stracke, Andrea, 1997. "Markov models and Thiele's integral equations for the prospective reserve," Insurance: Mathematics and Economics, Elsevier, vol. 19(3), pages 187-235, May.
    11. Kristian Buchardt & Thomas Møller & Kristian Bjerre Schmidt, 2015. "Cash flows and policyholder behaviour in the semi-Markov life insurance setup," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2015(8), pages 660-688, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiansen, Marcus C. & Furrer, Christian, 2021. "Dynamics of state-wise prospective reserves in the presence of non-monotone information," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 81-98.
    2. Ahmad, Jamaal & Bladt, Mogens & Furrer, Christian, 2023. "Aggregate Markov models in life insurance: Properties and valuation," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 50-69.
    3. Christiansen, Marcus C. & Furrer, Christian, 2022. "Extension of as-if-Markov modeling to scaled payments," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 288-306.
    4. Christiansen, Marcus C., 2008. "A sensitivity analysis concept for life insurance with respect to a valuation basis of infinite dimension," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 680-690, April.
    5. Oliver Lunding Sandqvist, 2023. "A multistate approach to disability insurance reserving with information delays," Papers 2312.14324, arXiv.org.
    6. Christiansen, Marcus C. & Djehiche, Boualem, 2020. "Nonlinear reserving and multiple contract modifications in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 187-195.
    7. Christiansen, Marcus C., 2008. "A sensitivity analysis of typical life insurance contracts with respect to the technical basis," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 787-796, April.
    8. Christian Furrer, 2022. "Scaled insurance cash flows: representation and computation via change of measure techniques," Finance and Stochastics, Springer, vol. 26(2), pages 359-382, April.
    9. Christiansen, Marcus C., 2010. "Biometric worst-case scenarios for multi-state life insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 190-197, October.
    10. Marcus C. Christiansen & Christian Furrer, 2020. "Dynamics of state-wise prospective reserves in the presence of non-monotone information," Papers 2003.02173, arXiv.org, revised Jan 2021.
    11. D'Amico, Guglielmo & Singh, Shakti & Selvamuthu, Dharmaraja, 2024. "Optimal investment-disinvestment choices in health-dependent variable annuity," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 1-15.
    12. Dacev, Nikola, 2017. "The Necessity Of Legal Arrangement Of Unit-Linked Life Insurance Products," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 8(3), pages 259-269.
    13. Debbie Kusch Falden & Anna Kamille Nyegaard, 2021. "Retrospective Reserves and Bonus with Policyholder Behavior," Risks, MDPI, vol. 9(1), pages 1-28, January.
    14. Kabuche, Doreen & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2024. "Pooling functional disability and mortality in long-term care insurance and care annuities: A matrix approach for multi-state pools," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 165-188.
    15. Marcus C. Christiansen & Michel M. Denuit & Jan Dhaene, 2014. "Reserve-Dependent Benefits and Costs in Life and Health Insurance Contracts," Tinbergen Institute Discussion Papers 14-117/IV/DSF80, Tinbergen Institute.
    16. Milbrodt, Hartmut, 2000. "Hattendorff's theorem for non-smooth continuous-time Markov models II: Application," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 1-14, February.
    17. Djehiche, Boualem & Löfdahl, Björn, 2016. "Nonlinear reserving in life insurance: Aggregation and mean-field approximation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 1-13.
    18. Marcus Christiansen, 2012. "Multistate models in health insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 155-186, June.
    19. Mathias Valla & Xavier Milhaud & Anani Ayodélé Olympio, 2023. "Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategies," Post-Print hal-03903047, HAL.
    20. Kristian Buchardt & Christian Furrer & Oliver Lunding Sandqvist, 2022. "Transaction time models in multi-state life insurance," Papers 2209.06902, arXiv.org, revised Feb 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.12522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.