IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.22471.html
   My bibliography  Save this paper

Log Heston Model for Monthly Average VIX

Author

Listed:
  • Jihyun Park
  • Andrey Sarantsev

Abstract

We model time series of VIX (monthly average) and monthly stock index returns. We use log-Heston model: logarithm of VIX is modeled as an autoregression of order 1. Our main insight is that normalizing monthly stock index returns (dividing them by VIX) makes them much closer to independent identically distributed Gaussian. The resulting model is mean-reverting, and the innovations are non-Gaussian. The combined stochastic volatility model fits well, and captures Pareto-like tails of real-world stock market returns. This works for small and large stock indices, for both price and total returns.

Suggested Citation

  • Jihyun Park & Andrey Sarantsev, 2024. "Log Heston Model for Monthly Average VIX," Papers 2410.22471, arXiv.org.
  • Handle: RePEc:arx:papers:2410.22471
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.22471
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    6. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    2. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    3. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    4. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    5. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    6. Erhard Reschenhofer, 2010. "Forecasting volatility: double averaging and weighted medians," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 1(3/4), pages 317-326.
    7. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    8. D. Delpini & G. Bormetti, 2015. "Stochastic volatility with heterogeneous time scales," Quantitative Finance, Taylor & Francis Journals, vol. 15(10), pages 1597-1608, October.
    9. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    10. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    11. Petra Posedel, 2006. "Analysis of the Exchange Rate and Pricing Foreign Currency Options on the Croatian Market: the NGARCH Model as an Alternative to the Black-Scholes Model," Financial Theory and Practice, Institute of Public Finance, vol. 30(4), pages 347-368.
    12. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    13. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    14. Robert F. Engle & Emil N. Siriwardane, 2018. "Structural GARCH: The Volatility-Leverage Connection," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 449-492.
    15. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    16. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    17. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    18. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    19. Aleksejus Kononovicius & Julius Ruseckas, 2014. "Nonlinear GARCH model and 1/f noise," Papers 1412.6244, arXiv.org, revised Feb 2015.
    20. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.22471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.