IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.18869.html
   My bibliography  Save this paper

On the mean-field limit of diffusive games through the master equation: extreme value analysis

Author

Listed:
  • Erhan Bayraktar
  • Nikolaos Kolliopoulos

Abstract

We consider an $N$-player game where the players control the drifts of their diffusive states which have no interaction in the noise terms. The aim of each player is to minimize the expected value of her cost, which is a function of the player's state and the empirical measure of the states of all the players. Our aim is to determine the $N \to \infty$ asymptotic behavior of the upper order statistics of the player's states under Nash equilibrium (the Nash states). For this purpose, we consider also a system of interacting diffusions which is constructed by using the Master PDE of the game and approximates the system of the Nash states, and we improve an $L^2$ estimate for the distance between the drifts of the two systems which has been used for establishing Central Limit Theorems and Large Deviations Principles for the Nash states in the past. By differentiating the Master PDE, we obtain that estimate also in $L^{\infty}$, which allows us to control the Radon-Nikodym derivative of a Girsanov transformation that connects the two systems. The latter allows us to reduce the problem to the case of $N$ uncontrolled diffusions with standard mean-field interaction in the drifts, which has been treated in a previous work.

Suggested Citation

  • Erhan Bayraktar & Nikolaos Kolliopoulos, 2024. "On the mean-field limit of diffusive games through the master equation: extreme value analysis," Papers 2410.18869, arXiv.org.
  • Handle: RePEc:arx:papers:2410.18869
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.18869
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.18869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.