IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.17366.html
   My bibliography  Save this paper

Kendall Correlation Coefficients for Portfolio Optimization

Author

Listed:
  • Tomas Espana
  • Victor Le Coz
  • Matteo Smerlak

Abstract

Markowitz's optimal portfolio relies on the accurate estimation of correlations between asset returns, a difficult problem when the number of observations is not much larger than the number of assets. Using powerful results from random matrix theory, several schemes have been developed to "clean" the eigenvalues of empirical correlation matrices. By contrast, the (in practice equally important) problem of correctly estimating the eigenvectors of the correlation matrix has received comparatively little attention. Here we discuss a class of correlation estimators generalizing Kendall's rank correlation coefficient which improve the estimation of both eigenvalues and eigenvectors in data-poor regimes. Using both synthetic and real financial data, we show that these generalized correlation coefficients yield Markowitz portfolios with lower out-of-sample risk than those obtained with rotationally invariant estimators. Central to these results is a property shared by all Kendall-like estimators but not with classical correlation coefficients: zero eigenvalues only appear when the number of assets becomes proportional to the square of the number of data points.

Suggested Citation

  • Tomas Espana & Victor Le Coz & Matteo Smerlak, 2024. "Kendall Correlation Coefficients for Portfolio Optimization," Papers 2410.17366, arXiv.org.
  • Handle: RePEc:arx:papers:2410.17366
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.17366
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. P. Bouchaud & M. Potters, 2009. "Financial Applications of Random Matrix Theory: a short review," Papers 0910.1205, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre-Alain Reigneron & Romain Allez & Jean-Philippe Bouchaud, 2010. "Principal Regression Analysis and the index leverage effect," Papers 1011.5810, arXiv.org, revised Feb 2011.
    2. Luu, Duc Thi & Yanovski, Boyan & Lux, Thomas, 2018. "An analysis of systematic risk in worldwide econonomic sentiment indices," Economics Working Papers 2018-03, Christian-Albrechts-University of Kiel, Department of Economics.
    3. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    4. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    5. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    6. Nguyen, An Pham Ngoc & Mai, Tai Tan & Bezbradica, Marija & Crane, Martin, 2023. "Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    7. Mattia Guerini & Duc Thi Luu & Mauro Napoletano, 2023. "Synchronization patterns in the European Union," Applied Economics, Taylor & Francis Journals, vol. 55(18), pages 2038-2059, April.
    8. repec:hal:spmain:info:hdl:2441/5q8fnecj1u87ka099dc571bhi2 is not listed on IDEAS
    9. Liu Ziyin & Kentaro Minami & Kentaro Imajo, 2021. "Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction," Papers 2106.04114, arXiv.org, revised Dec 2022.
    10. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
    11. Sandoval, Leonidas Junior & Bruscato, Adriana & Venezuela, Maria Kelly, 2012. "Building portfolios of stocks in the São Paulo Stock Exchange using Random Matrix Theory," Insper Working Papers wpe_270, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    12. Yongcheng Qi & Mengzi Xie, 2020. "Spectral Radii of Products of Random Rectangular Matrices," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2185-2212, December.
    13. F. Pozzi & T. Matteo & T. Aste, 2012. "Exponential smoothing weighted correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(6), pages 1-21, June.
    14. Zeng, Xingyuan, 2017. "Limiting empirical distribution for eigenvalues of products of random rectangular matrices," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 33-40.
    15. Raphael Douady & Antoine Kornprobst, 2018. "An Empirical Approach To Financial Crisis Indicators Based On Random Matrices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-22, May.
    16. Thomas Lux & Duc Thi Luu & Boyan Yanovski, 2020. "An analysis of systemic risk in worldwide economic sentiment indices," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(4), pages 909-928, November.
    17. Nguyen, Q. & Nguyen, N.K.K., 2019. "Composition of the first principal component of a stock index — A comparison between SP500 and VNIndex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Lars Heinrich & Antoniya Shivarova & Martin Zurek, 2021. "Factor investing: alpha concentration versus diversification," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 464-487, October.
    19. Esteban Guevara Hidalgo, 2015. "Bin Size Independence in Intra-day Seasonalities for Relative Prices," Papers 1501.05176, arXiv.org, revised Dec 2016.
    20. repec:spo:wpmain:info:hdl:2441/5q8fnecj1u87ka099dc571bhi2 is not listed on IDEAS
    21. Dalibor Eterovic & Nicolas Eterovic, 2012. "Separating the Wheat from the Chaff: Understanding Portfolio Returns in an Emerging Market," Working Papers wp_025, Adolfo Ibáñez University, School of Government.
    22. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2013. "A nested factor model for non-linear dependences in stock returns," Papers 1309.3102, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.17366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.