IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.09062.html
   My bibliography  Save this paper

Volatility Forecasting in Global Financial Markets Using TimeMixer

Author

Listed:
  • Alex Li

Abstract

Predicting volatility in financial markets, including stocks, index ETFs, foreign exchange, and cryptocurrencies, remains a challenging task due to the inherent complexity and non-linear dynamics of these time series. In this study, I apply TimeMixer, a state-of-the-art time series forecasting model, to predict the volatility of global financial assets. TimeMixer utilizes a multiscale-mixing approach that effectively captures both short-term and long-term temporal patterns by analyzing data across different scales. My empirical results reveal that while TimeMixer performs exceptionally well in short-term volatility forecasting, its accuracy diminishes for longer-term predictions, particularly in highly volatile markets. These findings highlight TimeMixer's strength in capturing short-term volatility, making it highly suitable for practical applications in financial risk management, where precise short-term forecasts are critical. However, the model's limitations in long-term forecasting point to potential areas for further refinement.

Suggested Citation

  • Alex Li, 2024. "Volatility Forecasting in Global Financial Markets Using TimeMixer," Papers 2410.09062, arXiv.org.
  • Handle: RePEc:arx:papers:2410.09062
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.09062
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Bloomfield & Maureen O'Hara & Gideon Saar, 2009. "How Noise Trading Affects Markets: An Experimental Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2275-2302, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    2. Yuming Fu & Wenlan Qian & Bernard Yeung, 2016. "Speculative Investors and Transactions Tax: Evidence from the Housing Market," Management Science, INFORMS, vol. 62(11), pages 3254-3270, November.
    3. Jason Shachat & Anand Srinivasan, 2022. "Informational Price Cascades and Non-Aggregation of Asymmetric Information in Experimental Asset Markets," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(4), pages 388-407, November.
    4. Nuzzo, Simone & Morone, Andrea, 2017. "Asset markets in the lab: A literature review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 42-50.
    5. Aggarwal, Nidhi & Panchapagesan, Venkatesh & Thomas, Susan, 2023. "When is the order-to-trade ratio fee effective?," Journal of Financial Markets, Elsevier, vol. 62(C).
    6. Huan Xie & Jipeng Zhang, 2016. "Bubbles and experience: An experiment with a steady inflow of new traders," Southern Economic Journal, John Wiley & Sons, vol. 82(4), pages 1349-1373, April.
    7. Shaen Corbet & Cian Twomey, 2014. "Quantifying the Effects of the Inclusion and Segregation of Contracts for Difference in Australian Equity Markets," International Journal of Economics and Financial Issues, Econjournals, vol. 4(2), pages 411-426.
    8. Lin, Mei-Chen & Wu, Chu-Hua & Chiang, Ming-Ti, 2014. "Investor attention and information diffusion from analyst coverage," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 235-246.
    9. Liu, Xiangqiang & Yang, Qingqing & Wei, Kai & Dai, Peng-Fei, 2024. "ESG rating disagreement and idiosyncratic return volatility: Evidence from China," Research in International Business and Finance, Elsevier, vol. 70(PB).
    10. Khapko, Mariana & Zoican, Marius, 2021. "Do speed bumps curb low-latency investment? Evidence from a laboratory market," Journal of Financial Markets, Elsevier, vol. 55(C).
    11. Merl, Robert & Palan, Stefan & Schmidt, Dominik & Stöckl, Thomas, 2023. "Insider trading regulation and trader migration," Journal of Financial Markets, Elsevier, vol. 66(C).
    12. Rannou, Yves, 2019. "Limit order books, uninformed traders and commodity derivatives: Insights from the European carbon futures," Economic Modelling, Elsevier, vol. 81(C), pages 387-410.
    13. Ormos, Mihály & Timotity, Dusán, 2016. "Market microstructure during financial crisis: Dynamics of informed and heuristic-driven trading," Finance Research Letters, Elsevier, vol. 19(C), pages 60-66.
    14. Huan Liu & Weiqi Liu & Yi Li, 2022. "Private Information Dissemination and Noise Trading: Implications for Price Efficiency and Market Liquidity," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    15. Peck, James, 2014. "A battle of informed traders and the market game foundations for rational expectations equilibrium," Games and Economic Behavior, Elsevier, vol. 88(C), pages 153-173.
    16. Zhou, Deqing & Zhen, Fang, 2021. "Risk aversion, informative noise trading, and long-lived information," Economic Modelling, Elsevier, vol. 97(C), pages 247-254.
    17. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    18. Lin, Shengle & Rassenti, Stephen, 2012. "Are under- and over-reaction the same matter? Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 84(1), pages 39-61.
    19. Michał Zator, 2014. "Transaction costs and volatility on Warsaw Stock Exchange: implications for financial transaction tax," Bank i Kredyt, Narodowy Bank Polski, vol. 45(4), pages 349-372.
    20. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.09062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.